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Abstract: Surface albedo is one of the key controlling geophysical parameters in the surface
energy budget studies, and its temporal and spatial variation is closely related to the global
climate change and regional weather system due to the albedo feathEdwnim. As an
efficient tool for monitoring the surfaced the Earth remote sensing is widely used for
deriving longterm surface broadband albedo with various geostationary andagpbiar
satellite platforms in recent decadégoreover, the algorithms for &imating surface
broadband albedo from satellite observationsluding narrowto-broadband conversions,
bidirectional reflectance distributidnnction (BRDF) angular modelig, directestimation
algorithmand the algorithms for estimating albedo fronogationary satellite datare
developed and improved. In this paper, we presardnaprehensivditeraturereview on
algorithmsand products for mapping surface broadbandddbwith satellite observations

and provide a discussion of different algorithersd products in a historicalerspective
based on citation anaig of the published literatur&his paper shows that the observation
technologieandaccuracy requirement of applicaticaa® important, and lontgrm, global
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fully-covered(including land, ocean, and séee surfaces), gafree, surface broadband
albedo products with higher spatial and temporal resolution are refpirdonate change,
surface energy budget, and hydrological studies.

Keywords: surface albedo Bidirectional Reflectane Distribution Function (BRDF);
remote sensingurface energy budgeglobal Land Surface SatelliteJLASS)

1. Introduction

Surface albedo is a critical geographmalametethatis widely used in studies of surface energy budget,
numerical weatheiorecast and general circulation mod¢l§. The surface broadband albedo is defined as
the ratio of the surface upwelling tadhe downward flux of shortwave solar radiation over the upward
semthemispherical spad2] (Figure 1) It is one of the contrlohg parameters dhesurface energgudget
equation3], which affects the input and relocatiminsolarenergyoverthe Earthds surface4,5].

The global land surface albedbangeswith natural processes and human activifiéds such as
deforestation[7,8], desertification9], wildfire [10], andthe decreasing of northefinemisphere snow
and sedce[11i 13]. These changes surface albedo aldofluenceregional and global weathgir4] in
which even tiny variations of surface albedo ¢aedback to the climate systeand affectthe global and
regional climate patterns. For example, theedbdrought feedback mechanigibi 18] and snow/sice
albedo feedback mechanidB,20] have been studied for decades, and the results showliblealo
plays an important role in global climate change.

The spatial and temporal variation of surface albedo is closely related to ¢lotste change and
regional weather systesf?1]. In manyclimateand land process models, the value of surfacelalize
usuallyassgned by land cover types generated bthesimple relationshippetweersurface albedo and
the solar zenith angleas well as withotherancillary variables[22,23] The comparisorof the surface
broadband albedo derivébm different models shows that different models pome surface albedo
differently andthatthe spread ofhe modeled albedo can be as larged&i 0.19 in the higHatitude
region ofthenortherrhemispher§24]. Thereforeijt is notsufficientto describehe changem the gbbal
surface albedo with modsimulated data only, and loitgrm surface albedo products with high spatial and
temporal resolution are required by thebalclimate change studies. As an efficient tool for monitoring the
surfaces of th&arth, remote sensing is widely used for deriving {tergn surface broadband albedo with
various geostationary and polanbit satellite platforms in the recent decades. &lae#e more and more
climatestudieghatuse surface albedo products generfitad satellite observations as forcing dgta,26]

For climate change studies, the demanded accur#oyafrface albedo productapproximatelyd.02 0.05
within 5 10 year®na global scal§21,27] and a sensitivity analysis shows that an absolute albedo accuracy
less than 0.02is required by the regional climate simulati¢2g).

From the 1980s tothe present, many algorithms for estimating surface broadband albedo from
satellite data have been developed, and various surface albedo products were generated with satellit
data. The related studies change rapidly with the development of satellite dbedratnologies, and
the scientiss who major in global climate change, surface energy budget, and hydes®dyghly
concerned because of thishus,it is necessaryo provide a literature review of the current algorithms
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and products, which will areethebroadinteress ofbothalgorithm developerand users of the surface
broadband albedo products.

x  Incident semi-hemisphere x Viewing semi-hemisphere

X Incident semi-hemisphere X Viewing semi-hemisphere

(b)

Figure 1. Definitions of the surface albed@) Black-sky albedo(b) White-sky albedo. The
red lines indicatéheincident directions and the blue lines indicate the viewing directions.

In this paper, we present a cprahensive review dhe literatureon algorithms and products for
mapping surface broadband albedo with satellite observations. Thispapganizeds follows: First
we provide distorical review otheliteratureon remotesensingf thesurface broadband albedo based
onstatisticaland citation analysis tools in Section 2. Then, we provide a brief description and discussion
about the algorithmsiSection 3. In Section 4, we provide a list aochparisorof the current widely
used surface albedo products gener&taa remote sensing data. Finally, we provide a brief summary
of this review in Section 5.

2. Literature Analysis

Citation analysis i®ne of the best ways for people to understand howesearctdeveloped, what
the most important issuase and what may be potential hotspiatsfuture studies. The statisailresults
and a citation relationship figure may help us tmave a clearer understanding of the timeline and
milestones of this subject. In this paper, we searchedttictesthatcontainfialbedin the title through
the website ofhe Web of Science™, Thomson Reuteilo excludestudies of planetary albedo, single
scattering albedo, top of atmosphere (TOA) albedo, and cloud albedo, we further screened the searche
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results by subject and keywords. Finally, the papers about the remote sensing of surfaceeakedo
collected from the Web of Science platform for edatstatistics and analysis.
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Figure 2. Citation statistics of mapping surface broadband allfemio satellite data(a)
The number of published articldsom 1969 to 2012(b) The total citationsfrom 1969 to
2012 (c) The articlesontributed by different research field in recent decades.

Figure 2shows the citation statistics of estimating surface broadband aftmedcsatellite data.
Figure 2ab shows the total publicationsand citations from 1969 to 2012. Both the numbers of
publications and citationgrow year by year, and the publication peak years are 1995, 200Qand
2014, while the citations peak years are 1995, 2000, and 2002. Howeveapies published after 2002
have not been widely citeldecauseéhe published yearare too recentFigure 2c shows the articles
contributed by different research field in recent decades. Before 1990, most of the studies were
contributed by atmospheric sciences in which the surface albedo was used as forcing data of globa
climate modelgGCM) and numerical weather forecast (NWF) models. The studies on the albedo
feedbacks and spatiedmporalvariations were also carried out. In recent two decades, the atmospheric
sciences is still the top field that contributes to this topic and marenamnearticlesof environmental
sciences, remote sensing, and imaging sciences were published. In addition, there are also many studit
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of oceanographyagriculture, water resources, docestrysince 1990s, such as the relationship between
albedo and eapotranspiration, land covimd usecarbon cycle.

The citation relationship analysis is carried out by the HistCite software, Thomson Reuters. The
resultsareshown in Figire 3. Kriebel [29] first proposedhe method for estimatinidpe surface albedo
of thevegetation canopy bafield measuredidirectional reflectance factor (BRF). Eight years later,
Kimes et al. [30] analyzed the estimation bias withnadirview reflectance based dhe radiative
transfer modeblnd declared that it is important to estimate {aadace albedo with multiplangular
satellite observationsuBsequentlylronset al.[31] also presented a study of estimating canopy albedo
with the BRF data, while Ransa@t al. [32] and Starkset al [33] proposed prototype algorithms for
estimatingthe surface albedo with multiplangular remote sensing data.

In addition tothe studies for estimating surface albedo with mukgrgular remote ssing data
(right branch of Figre 3, labeled in blue), another method for estimating broadband albedo with
narrowto-broad band conversions is @lgleveloped (left branch of kige 3, labeled in red)
simultaneously Brest and Goward34] first provided the concept othe narrowto-broadbad
conversion method for estimating surface albedo. Then, this method was apptigdiced Very High
Resolution RadiometeAVHRR) [35,36], LandsafThematic mapperTM) [37,38], andMeteosat[39].

In the late 19909ew papers (for example, validation of albedo products deifreed AVHRR [40]
and symmetry ofliurnalalbedo cycld41]) thatare highly citedverepublished. The main reason for
this phenomenors the lack of a stable multipleangular satellite platform, vikch demonstrates that the
observingechnologyis important for this subject.

Since theModerateResolution Imaging Spectroradiome{@1ODIS) onboardthe Terra satellite
launchedn 2000, the studies of estimating lasgrface albedo with remote sensing data entered into a
new era. Luchet al.[42] estimated the landurface albedo with semiempirical linear kernetiriven
model. This paper, with a serie relative studieg43i 45|, established the foundation of estimating
surface albedo witlbidirectionalreflectance distribution function (BRDF) modeling. Subsequently,
Schaafet al.[46] presented the algorithm and preliminary resultheMODIS BRDF/albedo product,
which beamethe most cited paper in this subjéntaddition Liang[47] summarizedheformerstudies for
estimating surface broadband albedo basedarrowto-broadandconversionsand providedeasyto-use
narrow-to-broacdand conversion coefficients for typiceemote sensing sensors with spectral
reflectance libraryand theSantaBarbara DISORTAtmosphericRadiative Transfer(SBDART) [48]
simulations. The abovenentioned three papers published in 2AWW2became the top cited papard
still have greainfluenceon the current studies, which candamsideed as milestones of this subject.

From 2002 to now, researchers paid more attemtitime improvement and validation of the current
surface albedo produd#9i 53]. In this period, the highligbtipapers include the algorithm fibresnow
albedo producfc4] and the direcestimation algorithnps5] (labeledwith greenin Figure 3.
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Figure 3. Citation relationship figure for mapping surface broadband albedo with satellite
datg where the radius dhecircle stands for thotal citatiors of its correspondindjterature
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(blue), directestimation algorithm (gre¢mand other tpics (white)
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With the aid ofcitation statistics andrelationship figure, we provideraview of estimating surface
albedo with satellite data. At theeginning there are mainly two branchesreearch thatocus on
angular and spectral integrationgspectively From the 1980s tothe 1990s, thealgorithms for
estimating surface albedwereimproved and applietb different field and satellite dathowever the
lack of a stable multiangular satellite observation platforestrainedhe developmentf this subject.
Thanks to the Earth Observing System (EOS) project, more and sataiiteswith multi-angular
viewing capabilitiehavebeen launched, lear to a sudden increasetimenumber of published papers.
Meanwhile, these two branches of stsddecame much more closatpnnected, and various surface
broadband albedo products estimated by satellite observations were deriwgdhis time. In the new
century the directestimation algothm became a new growth pouwiftthe estimating algorithm, and the
validation ancevaluationof currentsurface broadband products became a hot topic in this scope. Based
on the literature review and analysis, we can conclude that obsertetinmque andapplication
demandare imprtant for this subjectOn one handthe observation techniques are fundamental for
realizing newalgorithmsfor mapping surface broadband albedo, which can be demodstatie
publication anctitationpeak year around the year 2002. It also caioteseerthatthere would be more
and more papers published with the new sensors and platform (suciN&B& SPreparation Project
(NPP) Joint Polar Satellite System (JPSS), Senitnehder Europea@opernicugproject, and China
Gaofen satellitgprojec). On the other handheaccuracy requirement tifie application is also critical
for the remote sensing of surface albedo,l@tter, more accuratdbedo produstaredemandedy the
different applications.

3. Algorithms

A traditional algorithm for estimating surface broadbafmndm polarorbit satellite observations
consists of three steps: atmosph&acrection narrowto-broadband conversiorsd BRDF angular
modeling For mostcases, the narroto-broadand conversions arBRDF angilar modelingare the
two major components in the processing chain, which focus on spectral amdrangegration,
respectively(detailed information about these processadescribed in the Appendix). Bad onthe
review of the literaturedifferent studies areconcerred with different componentsThe implemenéed
steps and relationships dietse algorithms are shawn Figure4.

3.1 Narrowto-Broadband Conversions

When the land surface is assumed as lambertian (the reflectance is isotropiifféant solar/view
angles), the value of BRF is then equatialbedoand the surface broadband albedo can be estimated
from linear combinationsof narrowband albedo (spectral hemispherical reflectance) with different
weightcoefficients This methodvasfirst proposed by Brest and GowdB#] andwasthen applied to
different sensorsAVHRR [35,36], Landsat TM[37,38], Meteosa39] and Visible Infrared Imaging
Radiometer Suite|IRS) [56]. Liang [47] reviewed the above studiaad providedsimpleconversion
coefficients for estimating broadband surface albedo from a variety of sensors under different
atmospheric and surface conditioibe validation results show that the conversion formulae are very
accurate with an average residual standard araand 0.0250]. There are also some studies provide
the narrowto-broadband conversion coefficients for sN®&] andseaice [57]).
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Figure 4.Flow chart othealgorithms for estimating surface broadband allieata satellite
observations.(a) Narrowto-broadband conversiongb) BRDF angular modeling{c)
Direct-estimation algorithm(d) Estimating albedo from geostationary satellite data

The overall implemeation steps ofthe narrowto-broadband conversiorae shown in Figire 4a.
The narrowto-broadband enversion coefficient is firsterived with thein situ measured spectral
reflectance library and solar radiative fluxes simulatedhgyatmospheric radiative transfer models.
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Then the derived coefficients are appliedcanvert narrowband BRF to surface broadband albedo. The
narrowto-broadband conversion coefficients are also used as a part of the alguagbthorBRDF
angular modeling@ndthedirectestimation algorithm.

3.2.BRDFAngular Modeling

When the surfaceeflects differently with different solar and view argléhe hemispherical
reflectance (albeda@annotbe estimated frora singular observation, so it iecessaryo build a BRDF
angularmodelfor describing the reflectance anisotropy effect of the/taredn surfaces (right branch
of Figure3). Once the BRDF is fitted by empirical or seempiricalkernel functions with multangular
satellite observations, the black and wAsky albedo can be calculated dayintegrationof BRDF over
the solar/view smi-hemisphere. The estimation results are much @mocarae than those estimated by
the method based dhe lambertianassumptionespecially when the reflectance changes dramatically
with different solar/view anglesn the past decaded raytracingmodels, radiative transfer models,
analytical models based on approximations of the radiative transfer and empirical models are used fol
describing the surface BRD[58]. Among them, thesemiempirical moded are favored in albedo
modeling for their simply form as well as flexibilitiyn the year of 1992, Roujeat al.[59] proposed a
semtempiricallinear kerneldriven modelwhich enable thdescrigion of the reflectance anisotropy by
using linearcombinatons of isotropiG gecoptical, and volumescattering kerneld.ater on,the most
well-known algorithm based othe linear kernetiriven modelis proposed by Luchét al, which is
usually called theAlgorithm for MODIS Bidirectional Reflectance Anisotromf the Land Surface
(AMBRALS) [42]. The AMBRALS is appliedo generating the MODIS BRDF/Albedo products by
Schaatfet al.[46], which can estimatihe land surface albedo of land surfaceg&rfiLlspatial resolution,
8-daytemporal resolution) with clear sky, muliands, multangular MODIS reflectance data during a
16-dayobsenationcycle.Recently, the dailgurface broadbaralbedo produatMCD43A) is also being
generatedisinga 16day rolling methodi60,61] In thesestudiesthe RossThick and LiSparseR kernel
functionsare employedfor fitting a multi-angular observed BRAhe Rosd.i kernel modeldoesnot
performwell in the hotspot situatiodaignanet al.[58] proposed a modified Ro4s kernel functions
with consideration of the hgpot effect, which caaccuratelyrepresenthe sharp reflectance increase
the hotspot direction.

The processing chain of the algorithms that fesush BRDF angular modelingan be simply
separated intothree steps (Figre 4b): atmospheric correctionBRDF angular modeling and
narrowto-broadband conversions.

3.3. DirectEstimation Algorithm

The directestimation algorithm is a method for mapping surface broadband albedthioop of
atmosphere (TOA) reflectance of dhte observations directly55]. Compared with the algorithms
based on mulidate/angular observatiof#2,46], the directestimation algorithm enabl#ise estimation
of surface broadband albedo basedaosingledate/angular observation, which is more capalfle
characterizing the temporal variation of surface albedo, especially when the surface BRDF changes
rapidly[62]. Liang first proposed the direestimation algorithm with Eambertian spectral librabased
on a neural network (NNJ63] and projection pursuit regression (PPR) metH68% In asubsequent
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study, Lianget al.[64] usedthe DiscreteOrdinate Radiative Transfer (DISORT) model for simulating
the surface BRDF of snow/icand applied an gular bin regression for estimating surface broadband
albedo over the Greenland ice sheet. The BRDF database of this algorithm was further impdoved
appliedto the MODIS [65] and Polarization and Directionality of the Ed&stiiReflectances (POLDER)
BRDF databas§62,66] The directestimation algorithm has aléeenapplied to other satellite sensors,
such agthe Advanced Land Imager (ALI) of EQ [67] and the Airborne Visible Infrared Imaging
Spectrometer (AVIRIS) dat®8]. In addition thedirectestimationalgorithmhas in common with the
joint optimal method Both ofthemestimate surface albedo from TOA measuremdinggstly. The main
differencebetween thens thatthe jointoptimal methodsdo not usrior BRDF database. Instedale
RahmanPinty-Verstraete RPV) [69] BRDF model andadiative transfer modeR(TM) are used for
inverting from multi-angular OA measurements.

The flowchart othedirectestimation algortim is shown in Figre4c. First, a prior BRDF database
is built basedon fieldmeasured or modaimulated data. Then, a training dataset with TOA BRF and
its correspondingurface broadband albedo is derivien thefollowing processing steps: atmospheric
radiative transfer, BRDF angular modeling and narrowto-broadband conversions. Finally,

a relationship betweethe TOA BRF and surface broadband albeis established, enatd the
estimation othe surface broadband albedo watsingleangular observation.

3.4. EstimatingAlbedofrom GeostationarSatelliteData

Compared witlthe studieson estimating surface albedo from petabit satellite datathe algorithm
for generating albedo products from geostationary dat quite different.The geostationary
meteorological satellite can provide observatiwmd high £mporal resolution i geosynchronous
orbit, which are the onlyavailableplatforms (apart from the AVHRIRstrumen} that can be used to
retrieve surface albedo from tlearly 1980970]. The geostationary satellites have the advantage of
acquiring datafor the same stace target many times per day apibviding daily multiangular
sampling datasgv1].

Unlike the multispectral polaorbit satellites somesensors onboargkostationary satellisesuch as
the Meteosat Visible and Infrared Imager (MV)JRIo not havea nearinfraredband The absence of
the nearinfrared bands from these sensors makes it difficult to use the classic atmospheric correction
method.Thus, it is only possible taestimae surface reflectance weim the atmospheric impact (e.g.,
aerasol scattering) is low.

For addressing this issu€nappet al.[72] proposed a temporal composite method to deal thiéh
single bandGeostationarperationaEnvironmentalSatellite(GOES data In this study, thempacts
of cloud and aerosol over vegetated pixaks minimizedoy selecting the darkest observation within
temporal window. With the development of midpectral geostationary sensors, such as the Spinning
Enhanced Visible and Infrared Imager (SEVIBhboardthe Meteosat Second Generation (MS&@n
be used for estimating surface broadband albedo. The tempmradosite approach was extended by
considering the diurnal variation in surface reflectance and applied along with SEVIRI to estimate
aerosol poperties [73]. However, he surface reflectancevas negatively biased because more
observations provide more opportunities for darker observasindscloud shadowsAs a result, the
aerosol optical depth (AOD) retrievals have a positive biasnitigatethis issuethe current SEVIRI
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surface albedo algorithir4] employs an empirical formulation of latitude to estimate the AOD and
integrates the atmospherically corrected reflectanobt@inthe daily albedgoroduct For applying the
idar k ano$herc todrection methotb multi-spectral geostationary dathe surface spectral
BRF shape needs to be predefijéd]. In thesestudies, théIODIS albedo data were alsmployedas
the first guessTo better account for the interaction betweenattineosphere and the surfaeflectance
Govaertet al.[75] proposed goint optimalalgorithm to retrieve the surfaB&RF anddaily invariantAOD
simultaneouslywhich is similarto the previous approach designed tloe MVIRI albedo [76]. In this
algorithm, the BRF from the preceding day is used as prior information to control the separation of the
surface contribution from that of the atmosphere. The atmospheric correction was showanataweacy
equivalent to that of the MODIS prods, within 20% of the AOD values. To improve the temporal
resolution of the AOD estimation, Met al.[77] developedn algorithm to simultaneously retriete AOD
and surface reflectance by assuntimagboth the aerosol and the surface reflectance are stahketimee
consecutive SEVIRI observatigrnghich shows good agreement witrsitu measurements

One of the most challenged issues for generating surface albedo from geostationary satedlite data i
how to generateconsistentestimations from different sensors/platforristorts have been made to
derive surface albedo froadjacentMeteosatsatellites[78], which estimateconsistent resulte the
overlappedareawith acceptable differencé global geostationary surface albedo map has been derived
from five different geostationary satellites (Meteegatleteosab, GMS5, GEOS10and GOES3)[79],
which also show good agreemantong the results estimatiedm differentsatellites. It is alsonecessary
to account forthe measurement uncertainties and differences in the Meteosat radiometer characteristics.
Govaerts and Lattanzi80] proposed a statistical method fierivingthe runtime/perpixel estimation
of the uncertaity thatis crucial information for detecting the real changes of surface albedo.

Figure 4d shows dlowchart for estimatingsurfacebroadbandalbedo from geostationary satellite
data First, the surface BRDF and aerosol loadings are estinsatadtaneouslhyby the joint optimal
algorithm. Then, the broadband surface albedo is derived based BRE#eangular integration and
narrowto-broadband conversions.

3.5. Discussiorof Algorithms

The narrowto-broadbandconversionsand BRDF angular modelindocus on band and angular
integrations of the surface spectral BREspectively The narrowto-broadband conversiors a
fundamentahlgorithm for estimating surface broadband albedo from spectral albedo or BRF, which is
widely applied with the singlangularobserved platform wheassuming lambertian surfac€his
method iseasyto-use forestimating broadband albedo fraatellites with only a nadirview option
which can estimate surface broadband albedo with simple linear funéfiowsver,astheland/ocan
surfacesare notlambertianin most caseghis will result in non-negligibleegdimation errors when the
solar/view zenith angle is large, gas not adequate to estimatee surface broadband albedo from
singleangular BRF without BRDFnodeling Therefore, it ismecessaryo retrieve the BRDF witha
multi-angular observed BRHhis BRDF angular modelingnethod is quite robust and physically
explicit, so it is widely used for deriving surface albedo products from satellite with mahigular
viewing capabilitiesBecause most of the routigeused polaworbit satellite platforra cannot provide
sufficientnumbers of observations ameday (except polar regig) the current studies have to make a
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compromiseTheyassumehatthe land surface do@®tchange rapidly in a shagmporakparwindow
(oneweek, 16 days, amnemonth) Then the surface BRDfalbedois retrieved with the accumulated
multi-angular observationslowever, this assumptionm®talwaysvalid when the BRDF characteristics
of surfaces change rapidly, suchasenwildfire, snow fall/melt, and harvestcur. Comparedvith the
former twotypesof algorithms, the diree¢stimation algorithm has a relatiyeshort history. It provides
anopportuniy to correct the reflectance anisotropiteet with a prior BRDF databasexdenableghe
estimation ofsurface broadband albedo walsingleangular observation, which can greatly improve
the temporal resolution ofhe surface albedo products derivdibm satellite observationsThe
disadvantagef this method is that it is much more easily affected by the sensor noises and cloud
detectionerror, which neefiltering to obtain more convincingnd robustesults.In addition, the prior
BRDF database is very important for direstimation algorithm and the accuracy of the prior BRDF
database would impact the albedo estimation significafslyhe surface BRDF obtained from previous
retrievals and other products ght vary a lot during rapid change periods like disturbaetz® it is
necessary to check the qualitytbé BRDF data before using it

The algorithms for estimating albedo from geostationary satellite data can genefate albedo
products with verhigh temporatesolutionand also provide opportunitiesretrievethesurface albedo
and aerosatonditionssimultaneouslyHowever, the spatial resolution of albedo products derived from
geostationary satellite data ¢é@arserthanthoseof polarorbit satellite dataand can only cover the
latitude ranges from 6@ to 60 N with missing gaps in the high latitude regionkerefore efforts for
fusingdifferentgeostationary and polarbit surface albedo prodwsthould be made.

Becauseaall of these algorithms hawedvantagesind disadvantages at differeagpecs, the newly
developed algorithm should overcome the problenemtioned aboven the future. An alternative
method may béo fusethe results estimated by different algorithmsibbain an optimal produetith a
better spatiattmporalresolution.

In addition tothe processing chains debed in Figire 4, the pre-processingsteps such as sensor
calibrationandclouddetection/mask, anthe pre/postprocessing stepsuch as gap filling, topographic
correction and angular normalijzare also important for derivingurface broadbandlbedo products
with satelliteobservations.

4. Products

In recent decades, growing number of surface broadband albedo products estimated from satellite
observations have been derived. Thanks toBhegh observation projects carried out by different
countries and organizations, there are more and more choices for satefidemsliaind sensors for
estimating surface albedavhich provides opportunites for deriving surface albedo products by
collaborating observations of multiple platforms and sensors. The current widely used surface broadbanc
albedo poducts[3,81] arelistedin Table 1. Amonghe different surface albedo products, the spatial
resolution ranges from 250 m to 20 km, the temporal resolution ranges from daibntbly and the
temporal spans vary from 5 to 30 years

The surface broadband albedo products estichhy pola-orbit satellitesare MODIS [42,46,82]
Multi-angle Imaging SpectroRadiome{@®ISR) [83i 86], POLDER[58,87 90], Medium Resolution
Imaging SpectrometédMERIS) [91], VEGETATION [92], POLDER [58,93], and Clouds, Albedo and
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Radiation (CLARA)[94], andthoseestimated by geostationary satellis@eMeteosaf76,79,80,9597]
and SEVIRI[98,99]

Table 1 List of current surface broadband albedo products defigadsatellite observations.

Spatial Temporal Temporal Spatial
Name Platform ] ) References
Resolution Resolution Span Coverage
Global land
MODIS Terra/Aqua 1 knm/0.05 8 days 2000~+now [46]
surface
daily/monthly/ Global land
MISR Terra 0.2751 km 2000~+now [83i 86]
seasonallyearly surface
16dayg Globalland
MERIS ENVISAT 0.05° 2003~now [91]
30days surface
Global land
VEGETATION SPOT 1km 10days 1999~2012 [92]

surface
1996~97/2003 Global land
POLDER ADEOS 13 6 km 10days [58,93]
/20052006 surface

Geostationary

SEVIRI MSG 3 km (adin 10days 2004~now disk [74,98]
is
) 1981~2006 Geostationary
Meteosat GOESGMS 3 km (hadin 10days . [70,79]
/1998~2007  disk
Global
5 days/
CLARA NOAA 25 km 1982~2009 land/ocean [94]
monthly
surface
Terra/Aqua/SPOT Global land
GlobAlbedo 1 km/0.05 16days 1998-2011 [100]
[ENVISAT surface
Terra/Aqua/ Global land
GLASS 1 km/0.05 8 days 1981~2012 [62,101]
NOAA surface

In recent years, more and more products that collaabaervations of multiple platforms and sensors
such aghe Geostationary surface albedo (G$A)ject withinthe Sustained, Coordinated Processing of
Environmental Satellite Data for Climate Monitoring (SCG®EH) [70], GlobAlbedo [100] and the
Global land surface satellite (GLASH)01,102] were beinggeneratedThe GSA project witim the
SCOPECM [70] aims to generag reliable surface albedoproduct by collaborating long-term
geostationary satellite data from @iferentsensors/platforms of muttie agenciesA global GSA map
has been generated from five different geostationary satdlli@¢sThe GlobAlbedo surface albedo
productwasderivedfrom collaboratinghe MODIS, MERIS, and VEGETATION data from 1998 to 2011,
and the GLASS albedo prodweasderivedfrom collaborating thé&\VHRR data from 198to 2000and
the MODIS data from 2000 to 2012. Tlelvantagesf usingmulti-source satellite data are as follows:
(1) the multiplatform sagllite data increase the numhErobservationsandimprove the accuracy of
the retrievalof the BRDF; (2)the data also mimize the uncertainty caused by estimation algorithms,
cloudcontainmerg, and sensor noisemd(3) the data etend the temporal span tife surface albedo
products bycombiningthe results estimated by satellites with different life span

He et al. [103] conpared nine satellitbased global landurface albedo products for thmeriod
1981 2010. The results show that most of these products are consistéht a differenceof



Remote Seng015 7 1003

approximately 0.020.03 in global climatological albedo values, excepttfaInternational Satellite
Cloud Climatology Project (ISCCP) and the Global Energy and Water Exchanges Project (GEWEX).
The globalclimatologes of the GLASS, MODIS, MERIS, and GlobAlbedo datassgree well with

each other, while the CLARA sheva constanbverestimationin all seasonand GlobAlbedo shosv
overestimation in northern winters. The consistency of satbbised albedo datasetsonglydepends

on latitude.There isa better agreement in summer, while ladjéerences werdound in winter,
pariculardy at high latitudesln addition, the satellitbased surface albedo and snow cover extent are
highly correlated, and the trend$ decreasing in July and increasing in January ovemtrthern
hemisphere are likelgiue to the shrinking aneikpanding of snow cover.

4.1. Validations offurface Broadband Albedo Products

Since the global surface broadband albedo products were generated, various validéigimbkanfe
beencarried out for evaluating the dependencetlmmsolar zenith angl¢l04], robustness wittthe
combiration of terra and aqua dafd05], uncertainty withthe fractional of diffuse skyligh{106],
accuracy over high latitude snow surfadé?,107,108] and ephemeralsnowfall area[60,109]
consistency{110,111] and producguality [112]. The surfacen situmeasured albedo datasets used for
validating the surface broadband albedo are obtained fasurface radiant flux observation net, such
as FLUXNET[113], Baseline Surface Radiation Netwo{BSRN) [114], Surface Radiatioludget
network (SURFRAD)[115], and Greenland Climate NetworlGC-NET) [116]. However, the most
importantissue is that the footprint of ground measurements and the satellite pixel are sometimes not
comparablethus requiringan up-scalingof groundmeasued albedo with the aid of higtesolution
albedo products[49]. In recent years, more and more stud[é4,117] have evaluaté the
representativeness of ground stations with geostatistical attributes, and the data with high
representativeness are scre@for validating the generated surface albedo products.

4.2. GapFilling

There are usually large data gaps in surface broadband albedo products fdemiveatellite data
(for example, 2% 40% forthe MCD43B3 albedo product) due to cloodverageseasonanow cover
and sensor malfunctigi18]. As the spatial and temporadntinuityis impatant for applications, the
gapHilling algorithms are required for fillingrad filtering the missing dat#én the current studies, there
are mainly twestrategiespre-processin@nd posfprocessing. The prerocessing strategy is to improve
the data quality of the input data for estimating surface albedet du[119] improved the input data
quality with an adapted method based on the MODIS nadir BRDF adjufittarece (NBAR)data,
and Samairet al. [120] fill the gaps in the timaeries of BRDF coefficients with Kalman filter. In the
GlobAlbedo product, a regularization method was used to generate daily kernel coeffic@éhtsn
contrast the postprocessingtrategy fils the gaps of the albedo produthsit have been derived. The
main postprocessing methods for fillindpegaps othealbedo products ateeecosystem curvinfitting
(ECF), temporal spatial filter (TSF), and Statistiesed tempral filter (STF). The ECF method fills the
missing data by pixdevel and regional albeddimatologycurvesand has been applied for generating
spatially completalbedo dataset based on the MOD43B3 prod@i2®]. Fanget al.[123,124]proposed
the TSF method for generatinbegapfree albedo and leaf area index product based atlithatology
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of multi-yearobservationgnd neighboring observations. In the GLASS albedo products, the preliminary
results are filtered by the STF method base8ayesantheory for deriving the final producf$01].

4.3. Spatial and’emporal Resolutions

The spatialand temporal resolutioare major charactersf surface albedo products. However, the
spatial and temporal resolutions of current products are not adeguat@e conditions. For example,
when snow falls or melts, the lassdrface albedo changeapidly, which is not suitable to describe this
process with weekly or monthly albedo products, and the daily surface albedo products are[6&juired
In addition the spatial resolution of surface albedo products is also important. When the land cover is
heterogeneous (e,gatchyagricultual/forestland, urban area), the products wikni resolution are
not suitable for describing the spatial variation of alb&mathis situation Several studies focus on
generating high spatial resolutiasfthesurface albedo products wilthandsat TM125,126] Compact
High Resolution Imaging Spectromet@HRIS)PRoject for On Board AutonomiPROBA) [127],
HJ-1A/B [128], and AVIRIS[68], and the resolutieenhancing metho[d.29] has also been studied for
deriving surface broadband albedo products with finer spatial resolution.

4.4. OcearAlbedo

Thebroadbandlbedo over the ocean and sea surfaces is important for the energy buddgedies
in theoceanicand polar regionsThe ocean covers more than 70% of Hagthds surface, which plays
an important role in thenergy exchange and-déstributiondue to its high specific heat capacity and
the upper ocean redistributes heat through faogée oceanic currents and atmospheric circul§iidy.

In the high latituderegiors, thesurface ofocean water isisuallycovered withsnowkeaice with high
reflectance propertieI.he annualmeltsfreezes of the Arctic/Antarctic seace resultin large albedo
changes in the polar regiowhich can significantly affect the global and regional clinpa8d.,132]

The ocean albeddepends othewind field, concentrations athlorophyll suspended particles, and
colored dissolved organic matter (CDOM)he oceanvater, while the sedce albedo is closely related
to thesnow/sedce grain size, concentration aif bubbles, brine pocket, asdntaminationsn the sea
ice, as well as thenelt pond fractiorf133,134] The ocean surface albedo can be separated into three
componentswater leaving reflectance, sun glint, and whiteda@$]. In the climate model, the ocean
surface is modeled asaflsurfacg136] or declining facet$137] and calculated with Snéll law, the
Fresneformulae andthe CoxandMunk function[138]. However, the albedo contributisaf thewater
leaving reflectancand whiteaps arenot considered in these studigsmost regional and global climate
models, simple schemareused for describing saee albedo, whiclonly takeinto consideratiorthe
relationshipbetweersnow age and surfatemperaturg¢139].

Althoughmany surface broadband albedo products over thedaridcehavebeen generatedew
productscontainalbedo over the ocean and $ea surfacedlt is also notable that the currgmtoducs
only containalbedo over théand-surfaces andthat the albedoover the ocean and seige surface is
usually left blankThis is becauseéhe BRDF model for ocean water and-s&ais quite diffeent from
that of land surfaceand the temporal dynamics are much nayeenmaticthan the snowree land surfaces.
The onlyavailablesurface broadband albedo prodwnethe CLARA SAL producti94] andthe GLASS
phase2 surface albedo produdn the CLARA surface albedo product, the albedo dherseaice
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surface is derived based on a temporal average method ba#iegllambertian assumption, and the
albedo ovetthe ocean surface is derived based on a-@okable proposed by Jet al. [140]. In the
GLASSphase2 surface albedo product, the albedo dherArctic seaice surface will be deriveldlom a
directestimation algorithm based on a prior BRDF databizstés generated by model simulatigig1],
and the albedo over the ocean stefavill be generated by a threemponentocean water albedo
(TCOWA) model and reanalysis ddfa2].

4 5. Discussion oProducts

Although encouraging achievements have been acquired, the current surface broadband albedo produc
still sufferfrom the problemsf product accuracy, temporal resolution, and data intd@d]. The regions
with large uncertaintyand low cofidence in product accuracy alegh latitude snow/icg107,108]
desert{65], and mountain arefd44]. In addition, the methods for collaborating misitiurce satellite
observations, data pprocessing, and gap fillinglso ned to be further improved ifuture studies.
Therefore, lhe methodgo estimatehe measurement uncertainties and differencesuiti-radiometer
characteristicare necessargo].

The longterm record datare particulaty important for climate change studies, and the temporal
span of the current surface albedo products is still relgtsreort for such research purpe$#45]. In
addition, when the reflectance properties ofEaethds surfaces change rapidly (for exampaow fall
and melt, dforest, and harvest) in the patchy regidimer spatial and temporal surface albedo products
are required.

The requiremenof the accuracyand thetemporal and spatiaksolutionof the surface broadband
albedo producinainly dependon the specific applications and regiospatiattemporalheterogeneity
Therefore, current products still need to be improved to meet the requirements of different
regional/global applicationdvleanwhile, amore accurae albedo product is required for providiag
better assessmeot the albedalimatology, trends, and anthropogenic impastsch as land cover and
land use change, which is important fwth researchers angolicymakers[103]. Longterm, global
fully covered(including land, ocean, and sg& surfaces), gafyee, surface broadband albedo products
with higher spatial and temporal resolution are required by the global climate change, surface energy
budgetand regional hydrological stigs

5. Conclusions

In this paper, we presentcamprehensiveeview of algorithmsand productgor mapping surface
broadband albedivom satellite observation3.hesalient pointaresummarizeds follows

(1) A literature analysis for mapping surface broadband albedorigeaaout with the HistCite
software From this analysis,we can concludethat te observationtechnologiesand accuracy
requirement of applicationare sources of innovationg he studies have changsmnificantly with the
developments of observatitechnologies, from grouraifborneplatformsto geostationary and potarbit
satellites,as well afrom singleangular to multangular observation platform§he publications and
citations peak years are closely related toldliachtime of satellitesMeanwhile,the requirement of
applications(e.g, regional hydrology, urban environment monitoring and global climate change
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assessments another driving force for deriving lortgrm, gap free albedo products with higher spatial
andtemporalresolutiors.

(2) The narrowto-broadband conversiorlBRDF angular modelinglirectestimation algorithm, and
thealgorithm for geostationary satelltarereviewed and discussethese algorithms have advantages
for different aspeat For examplealthoughthe AMBRALS BRDF/albedo algorithm is physically robust,
the temporal resolution dhe albedo product derivefilom it is relativdy course[62]. Conversely the
directestimation algorithnenableghe estimation of theurface broadband albedo wikingle-angular
observationthoughthe results shovargerfluctuations than the results estimatedthe AMBRALS
algorithm[65]. Therefore,it is necessaryo consider thelata fusion of the estimation results derived
from different algorithmsin addition the algorithms that collaboemulti-source observations age
promising solution formproving the accuracyandrobustnessf the surface broadband albedo.

(3) The curreny availablesurface broadband albedo products from satellite observations are listed,
and the issues for validation, gap fillingpatial/temporal resolutiomceanalbedo,and challenges are
presergdin this paperAs a variety of surface albedo products have bgenerated,tiis a challenged
issueto estimaterun-time uncertaity of different albedo productt can be concluded that thenigterm,
globalfully covered(including land, ocean, and se&® surfaces)gapfree, surface broadband albedo
products with higher spatial and temporal resolution are reqforedimate change, regional energy
budget and hydrological studies.
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Appendix
Appendixt. Fundamental Principle, Nomenclatures and Symbols of the BRDF and Albedo

In most ofthecircumstances aflumination, the natural andrtificial objects on th&arth areneither
ideal specular (mirrelike) nor ideal diffuse reflectors (Lambertiad)he directional reflectance over
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land/ocean surfaces varies with the viewing dludninating directions.Therefore, the Bidirectional
Reflectance Distribution Function (BRDF) is wigaused fordescribingthe reflectanceanisotropic
property which was defined by Nicodemasal.(1977)[146] (FigureAl),

. dL (a..q,) _dL(q., L 4 M -1
BRDF = f (q., /: Vo= = st s Ve
/ /(qs /s vq vy dE/ (qs) dE/(qS, /S) [Sr ] (1)

where( , ) stands for the incident and viewing directions, wtdahalso be expressed ihe form
of azenith anglef() and azimuth angleg(): the irradiance direction {(s— ) and the viewing direction
is (—, ), respectively’ QO is the increment of spectral irradianded ‘ & ) in an incoming
beam ( ) on a given point ah surface or plane at wavelengthwhile Q) h  is theincremenbf
the corresponding reflected spectral radiangex( i i * a ) from thepoint in the sensor viewing
direction ( ).

dE,(6..0,)

daL,(6.,¢,.0.,¢.)

— Incident direction

— Viewing direction

Figure Al.Incident and viewing geometries for definition of BRDF.

However, the BRDFcannot be practicaly and rigorously measured in natural illumination
circumstanceghus,the Bidirectional Reflectance Factor (BRF) is usually used instead, which is defined
by the ratio of the reflected radiant flux from the target surface todieterpartrom an idealiffuse
surface within the same area undaridentical solar/view geostry. When the view solid angle
approachks0, the BRF can be expressed as a sim@thematicafunction ofthe BRDF [147],

abs(qs):%ﬁ” Ra.a,) o, @)

whereY h  denoteghe BRF, which is a function adhewavelength . In the following sections,
thewavelengthsymbol isomitted which makes the following equations much cleareteasier to read.

The surface albedo is defined @ ratio of upward and downward radiation flux, where the
downward radiatiofilux can be categorizedto two parts:directionaland diffuse radiation. When the
surface is illuminated with ideal directional radiation, the surface albedo is calledskiaeitbedo
(BSA) or directionalhemispherical reflectance (DHR), which can be expressed as the integration of its
BRF overtheincident semihemisphere,
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a.@) = L) @, @

where| is the blacksky albedo inthe illuminating direction ,°Y h  is the BRF of the
surface, and @ é—.

When the surfaces illuminated with ideatiffuse radiation, the surface albedo is called whitg
albedo (WSA)or bi-hemispherical reflectance (BHR), which dam expressed asdouble integration
over the illuminating and viewing sethemisphere,

_1.3,0 1 d‘n—l 2p1,.2p1 - dd
aws_/_jr() 0 ﬁqs) g] s s_/z 0 On Oﬂqsﬁv) F,‘j/w Jnay an (4)

wherg isthewhite-sky albedo antl @ é— FigureA2 shows the flowchart for deriving théack
and whitesky albedo from BRDF.

BRDF Black-sky albedo = White-sky albedo

Integration over the viewing
semi-hemisphere

Integration over the incident
semi-hemisphere

Figure A2. Flow chart of deriving the black and whis&y albedo from BRDF.

The instantaneous surface albedo measured urataraldaylight illumination is usually called
blue-sky albedo and can lapproximatelyexpressed aa linear combination of black and whigky
albedo[106,148,149]

a(q.s)o (l _D(l; )) bs@ s) B( ’ )IL ws (5)
where$ th_ denotes the fraction of diffuse light, which varies wiitle aerosoloptical wavelength
(AOD) t and wavelength.

The surface broadband albedo can be estimatéuklnytegration othespectral albedo (narrowband
albedo) weighted by the distributiontbeincident radiation flux varied with wavelengtf#],

A F@ ) 409

a( g =—"— (6)
' F@ 3 /
where — isthebroadband albedp, — is thenarrowband albed@and’O —h_ is the downward

solar radiation flux.

According to the above physiadéfinitions the surface albedo can be estimatethi®grationover
atmospheric corrected, clodicee, multrangular satellite observations. However, it is hard to observe
an object orkarth in all solar/view anglesmultaneouslyn a global scale, so it is important to build a
BRDF model for describintipe surface anisotropy, which can be usedherpolatingandextrapolating
the BRF in the solar/view angles with@attelliteobservations. In the earlier studies, the BRF is usually
fitted by empirical functionf2], such as Minnae[L50], Shibayamarsd Wiegand151], Walthall[152]
and StayloiSuttles[153]. In the current studies, the BRFusuallyfitted with a semiempirical linear
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kerneldriven model, which expresses the BRFadisear combination of isotropic, volume scattering
and geometricabptical kernels,

I:eL (q. s’q v) = fiso, L +fvo|, LKvoI(q. s’q v) :i-geo IK gec(q s’q- v) (7)

where0 andu  arethevolume scattering, and geometrical optical kernel functions,@nd™Q ,
and’Q aretheisotropic, volume scattering and geometric optical keraefficiens, respectivelyThe
symboly denoteghe band of satellite sensors.

The coefficients othelinear kerneldriven model can be calculated dleast square regression with
atmospheric corrected mublingular reflectance dataherethe black and whitsky albedo can be
calculatedas[42,46],

a(@=a fthl ¥ (8)
k
a.=q fH
1 ©)
where’Q — is theintegration of kernel function h 0 istheintegration ofQ — over the
incident semhemisphere, which can be fitted &g follows
h(G)= G 0§ & < (10)

Accordingto Equatiors (9) and (10), the black and whis&y albedo can be estimated[69,154]
abs( ql )/= fiso( )(go iso -llgl iso i %2 iso 35) q

fvol(/ )(QOVOI + glvol é +ng0| 53() (11)
fgeo(/ )(gO geo+ gl geods +92 geo C’q
aws( /) = fiso( )g iso +f vo( )gvol {-geg )g/ge (12)

where’Q and’Q arethecoefficients for calculating the black and whstey albedo.
According to Egation(6), the surface broadband albedo can be estimated from narrowband4ihedo

a:acné(y (13)

wheret is the band number of satellite sensarsis the narrowto-broadband conversion coefficient of
bandg .

Recently, the diree¢stimation algorithm is also used &stimaing surface broadband albedo, which
incorporateso estimate surface broadband alb&dm asingleangularobservation. The concept thie
directestimation algorithm is to buildlinearregressiomelationship between top of atmosphere (TOA)
BRF and surface broadband albedo in different angulardaiesed on BRDF database, which can be
expressed as follows§2],

an=m(q g)A M. ¢ )TN s ) (14)

i=1

Aus( @) =1o( & Ty H’%n( o @ v W SH L) (15)
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where”  —h—h is the TOA BRF of ban#atsolar zenith angle of-, view zenith angle of~ and
relative azimuth angle of ; & —h—g andé¢ — h—h— are the intersection terms of the
regression equatio, —h—hg andé — h—h— are thecoefficientsof the regression equation
for each corresponding angular bin.

In this section, wentroduce thefundamentalprinciple of the surface broadband albedo, and the
nomenclaturesand symbd are according to thelefinition of Schaepmaistrub et al [155] and
algorithmtheoreticabase document (ATBD) ahe MODIS BRDF/albedo produdi56].

References

1. Dickinson, R.E. Land surface processes and cliin&erface albedos and energy balance.
Adv. Geophys1983 25, 305 353.

2. Liang, S.QuantitativeRemote Sensingf Land SurfacesWiley: New York,NY, USA, 2004.

3. Liang, S.; Wang, K.; Zhang, X.; Wild, M. Review on estimation of land surface radiation and
energy budgets from ground measurement, remote sensing and model simukEBns.Spec
Top Appl. Earth Obs Remote Seng01Q 3, 225 240.

4. Porter, D.F.; Cassano, J.J.; Serreze, M.C.; Kindig, D.N. New estimates of thedalggrctic
atmospheric energy budgét.GeophysRes 201Q 115 doi:10.1029/2009JD012653

5. Trenberth, K.E.; Fasullo, J.T.; Kiehl,H.a r t h 6 gnergyl badgeiBull. Am Meteorol Soc
2009 90, 311 323.

6. Sagan, c.,; Toon, Oo. B. ; Pol |l ack, J. B. Ant hr
Sciencel979 206 1363 1368.

7. Bala, G.; Caldeir&.; Wickett, M.; Phillips, T.; Lobell, D.; Delire, C.; Mirin, A. Combined climate
and carborcycle effects of largscale deforestatiomn Proceedings of the National Academy of
SciencesStanford, CA, 24 February 2007

8. Zhang, Y.; Liang, S. Surface radiative forcing of forest disturbancesNwe¢heasterrChina
Environ Res Lett 2014 9, doi:10.1088/178i 9326/9/2/024002.

9. Charney, J.G. Dynamics of deserts and drought ils#tel Q. J. Roy Meteorol Soc 2006 101,

193 202.

10. Myhre, G.; Govaerts, Y.; Haywood, J.M.; Berntsen, T.K.; Lattanzio, A. Radiative effect of surface
albedo change from biomass burning.Geophys Res Lett 2005 32
doi:20810.21029/22005GL022897.

11. He, T.; Liang, S.; Yu, Y.; Wang, D.; Gao, F.; Liu, @eenland surface albedo changesli2812
from satellite observationEnviron Res Lett 2013 8, doi:10.1088/178i 9326/8/4/044043.

12. Meier, W.N.; Stroeve, J.; Fetterer, F. Whither arctic sea ice? A clear signal of decline regionally,
seasonally and extding beyond the satellite recosshn Glaciol. 2007, 46, 428 434.

13. Shi, Q.; Liang, S. Characterizing the surface radiation budget oveTilletan Plateauwith
groundmeasuredieanalysis, and remote sensing data sets: 2. Spatiotemporal adatysighys
Res Atmos 2013 118 8921 8934.

14. Ramaswamy, V.; Boucher, O.; Haigh, J.; Hauglustine, D.; Haywood, J.; Myhre, G.; Nakajima, T.;
Shi, G.; Solomon, S. Radiativeorcingof Climate Available online: http://www.esrl.noaa.gov/
csd/assessments/ozone/1991/chapters/chapter7.pdf (accessed on 8 October 2014)



Remote Seng015 7 1011

15.

16.

17.

18.

19.

20.

21.

22.

23.

24,

25.

26.

27.

28.

29.

30.

31.

Charney, J.; Stone, P.; Quirk, W. Drought in 8a&haraA biogeophysical feedback mechanism.
Sciencel975 187, 434 435

Courel, M:F.; Kandel, R.; Rasool, S. Surface albedd #re Saheldrought.Nature 1984 307,

528 531.

Zeng, N.; Yoon, J. Expansion of the wadddeserts due to vegetatiaibedo feedback under
global warmingGeophysRes Lett 2009 36, doi: 10.1029/2009GL039699

Loew, A. Terrestrial satellite records for climate studies: How long is long enough? A test case for
the Sahel Theor Appl. Climatol. 2014 115 427 440.

Curry, J.A.; Schramm, J.L.; Ebert, E.E. Seaatisedo climate feedback mechanignClim. 1995

8,240 247.

Déy, S.J.; Brown, R.D. Recent northern hemisphere snow cover extent trends and implications
for the snowalbedo feedbackseophysRes Lett 2007, 34, doi:10.1029/2007GL031474
HendersorSellers, A.; Wilson, M. Surface albedo data for climatic modeRay. Geophys1983
21,1743 1778.

Wang, Z.; Zeng, X.; Barlage, M.; Dickinson, R.; Gao, F.; Schaaf, C. Wdo®IS BRDF and
albedo data to evaluate global model land surface aldeHydrometeoral2004 5, 3i 14.

Zhou, L.; Dickinson, R.; Tian, Y.; Zeng, X.; Dai, Y.; Yang;lZ; Schaaf, C.; Gao, F.; Jin, Y.;
Strahler, A. Comparison of seasonal and spatial variations of albesilmsModerateResolution
Imaging SpectroradiometdMODIS) and common land model. Geophys Res 2003 108
doi:10.1029/2002JD003326

Zhang, X.; Liang, S.; Wang, K.; Li, L.; Gui, S. Analysis of global land surface shortwave
broadband albedo from multiple data sour¢dE&EE J.Sel Top. Appl. Earth Obs Remote Sens
201Q 3, 296 305.

Boisier, J.; de NobleDucoudré N.; Ciais, P. Inferring past land useluced changes in surface
albedo from satellite observations: A useful tool to evaluate model simuladBmggosciences
2013 10, 1501 1516.

Myhre, G.;Kvalevd, M.M.; Schaaf, C.B. Radiative forcing due to anthropogenic vegetation
change based onMODIS surface albedo data.Geophys Res Lett 2005 32
doi:10.1029/2005GL024004

Jacob, F.; Olioso, A. Derivation of diurnal courses of albedo and reflected solar irradiance from
airborne POLDER data acquired near solar noonl. Geophys Res 2005 110
doi:10.1029/2004JD004888

Sellers, P.; Meeson, B.; Hall, F.; Asrar, G.; Murphy,$thiffer, R.; Bretherton, F.; Dickinson, R.;
Ellingson, R.; Field, C. Remote sensing of the land surface for studies of global change:
Modelg®d Algorithmsd ExperimentsRemote Sengnviron 1995 51, 3i 26.

Kriebel, K.T. Albedo of vegetated surfadels variability with differing irradiances.
Remote Sen&nviron 1979 8, 283 290.

Kimes, D.S.; Deering, D.W. Remegensing of surface hemispherical reflectance (albedo) using
pointable multispectral imaging spectroradiomet®emote Sen&nviron 1992 39, 85 94.

Irons, J.R.; Ranson, K.J.; Daughtry, C.S.T. Estimating big bluestem albedo from directional
reflectance measuremenRemote Sen&nviron 1988 25, 185 199.



Remote Seng015 7 1012

32. Ranson, K.J.; Irons, J.R.; Daughtry, C.S.T. Surface albedo from bidirectional refectan
Remote Sen&nviron 1991, 35, 201 211.

33. Starks, P.J.; Norman, J.M.; Blad, B.L.; Waltershea, E.A.; Walthall, C.L. Estimation of shortwave
hemispherical reflectance (albedo) from bidirectionally reflected radiancédatate Senknviron
1991, 38,123 134.

34. Brest, C.; Goward, S. Deriving surface albedo measurements from narrow band satellite data.
Int. J. Remote Send987, 8, 351 367.

35. Russell, M.J.; Nunez, M.; Chladil, M.A.; Valiente, J.A.; LopezBaeza, E. Conversion of nadir,
narrowband reflectancen red and neamnfrared channels to hemispherical surface albedo.
Remote Sen&nviron 1997 61, 16 23.

36. Saunders, R.W. The determination of broad band surface albedoAW#RR visible and
nearinfrared radiancesnt. J. Remote Sen99Q 11, 49 67.

37. Duguay, C.R.; Ledrew, E.F. Estimating surface reflectance and albedd.&msat5 thematic
mapper over rugged terraidhotogramm. Eng. Remote Sel@92 58, 551 558.

38. Knap, W.H.; Brock, B.W.; Oerlemans, J.; Willis, 1.C. ComparisonLahdsatTM-derived and
groundbased albedosbfa ut G| a c, SwetzerlaifntalrRerhote $en$999 20, 3293 3310.

39. Valiente, J.A.; Nunez, M.; Lopezbaeza, E.; Moreno, J.F. Nabamwd to broadband conversion
for Meteosatvisiible channel and broadand albedo using botAVHRR-1 and2 channels.

Int. J. Remote Sen4995 16, 1147 1166.

40. Stroeve, J.; Nolin, A.; Steffen, K. ComparisonAdfHRR-derived andn situsurface albedo over
the Greenlandce sheetRemote Sen&nviron 1997 62, 262 276.

41. Minnis, P.; Mayor, S.; Smith, W.L.; Young, D.F. Asymmetry in the diurnal variation of surface
albedo.l[EEE Trans Geosci Remote Send997, 35, 879 891.

42. Lucht, W.; Schaaf, C.; Strahler, A. An algorithm for the retrieval of ddbgom space using
semiempiricaBRDF models.|EEE Trans. Geosci. Remote Se&230Q 38, 977 998.

43. Barnsley, M.J.; Hobson, P.D.; Hyman, A.H.; Lucht, W.; Muller, J.P.; Strahler, A.H. Characterizing
the spatial variability of broadband albedo in a semidesarronment folMODIS validation.
Remote Sen&nviron 200Q 74, 58 68.

44. Lucht, W.; Hyman, A.H.; Strahler, A.H.; Barnsley, M.J.; Hobson, P.; Muller, J.P. A comparison
of satellitederived spectral albedos to grodnased broadband albedo measurements modeled to
satellite spatial scale for a semidesert landsdaemote Sen&nviron. 200Q 74, 85 98.

45. Lucht, W.; Lewis, P. Theoretical noise sensitivity BRDF and albedo retrieval from the
EOSMODIS andMISR sensors with respect to angular sampling.J. Remote Seng00Q 21,
81r 98.

46. Schaaf, C.; Gao, F.; Strahler, A.; Lucht,;Wi, X.; Tsang, T.; Strugnell, N.; Zhang, X.; Jin, Y.;
Muller, J. First operationd8RDF, albedonadirreflectance products froMODIS. Remote Sens
Environ 2002 83, 135 148.

47. Liang, S. Narrowband to broadband conversions of land surface albeddgorithms.
Remote Sen&nviron 2001, 76, 213 238.

48. Ricchiazzi, P.; Yang, S.; Gautier, C.; Sowle, SBDART: A research and teaching software tool
for plane parallel radiative transfer in the eé&thtmosphereBull. Am Meteorol Soc 1998 79,
210172114



Remote Seng015 7 1013

49. Liang, S.; Fang, H.; Chen, M.; Shuey, C.; Walthall, C.; Daughtry, C.; Morisette, J.; Schaaf, C.;
Strahler, A. ValidatingMODIS land surface reflectance and albedo products: Methods and
preliminary resultsRemote Sen&nviron 2002 83, 149 162.

50. Liang, S.; Shuey, C.; Russ, A.; Fang, H.; Chen, M.; Walthall, C.; Daughtry, C.; Hunt, R.
Narrowband to broadband conversions of land surface alded®alidation. Remote Sens
Environ 2003 84, 25 41.

51. Roman, M.O.; Schaaf, C.B.; Woodcock, C.E.; Strallet,; Yang, X.Y.; Braswell, R.H.; Curtis, P.S,;
Davis, K.J.; Dragoni, D.; Goulden, M,Let al. The MODIS (collection vOO5)BRDFalbedo
product: Assessment of spatial representativeness over forested landReapes. Sengnviron
2009 113 2476 2498.

52. Stroeve, J.; Box, J.; Gao, F.; Liang, S.; Nolin, A.; Schaaf, C. Accuracy assessmeriOMhe
16-day albedo product for snow: Comparisons @tieenlandn situmeasurement®emote Sens
Environ 2005 94, 46 60.

53. Susaki, J.; Yasuoka, Y.; Kajiwara, K.; Honda, Y.; Hara, K. ValidatioM©DIS albedo products
of paddy fields inJapanlEEE Trans Geosci Remote Sen2007, 45, 206 217.

54. Klein, A.G.; Stroeve, J. Development and validation of a snow albedo algoriththefsfODIS
instrumentAnn Glaciol. 2002 34, 45 52.

55. Liang, S. A direct algorithm for estimating land surface broadband albedo®M@idS imagery.
IEEE Trans Geosci Remote Sen2003 41, 136 145.

56. Liang, S.; Yu, Y.; Defelice, T.R/IIRS narrowband to broadband land surface albedo conversion:
Formula and validatiorint. J. Remote Sen2005 26, 1019 1025.

57. Xiong, X.; Stamnes, K.; Lubin, D. Surface albedo over the arctic ocean deriveA¥dRR and
its validation withSHEBA data.J. Appl.Meteorol.2002 41, 413 425.

58. Maignan, F;, Bré@n, F.; Lacaze, R. Bidirectional reflectance of earth targets: Evaluation of
analytical models using a large set of spaceborne measurements with emphasis on the hot spo
Remote Sen&nviron 2004 90, 210 220.

59. Roujean, J.L.; Leroy, M.; Deschamps, P.Y. A bidirectional reflectance model of thés sartiace
for the correction of remote sensing dataGeophysRes 1992 97, 20455 20468.

60. Wang, Z.; Schaaf, C.B.; Chopping, M.J.; Strahler, A.H.; Wang, J.; Roma.; Rocha, A.V;
Woodcock, C.E.; Shuai, Y. Evaluation d&foderateResolution Imaging Spectroradiometer
(MODIS) snow albedo produdviCD43A) over tundraRemote Senknviron 2012 117, 264 280.

61. Wang, Z.; Schaaf, C.B.; Strahler, A.H.; Chopping, MRdmdn, M.O.; Shuai, Y.; Woodcock, C.E.;
Hollinger, D.Y.; Fitzjarrald, D.R. Evaluation oMODIS albedo product NICD43A) over
grassland, agriculture and forest surface types during dormant andcemered periods.
Remote Sen&nviron 2014 140, 60/ 77.

62. Qu, Y.; Liu, Q.; Liang, S.; Wang, L.; Liu, N.; Liu, S. Direestimation algorithm for mapping
daily landsurface broadband albedo frat©ODIS data.l[EEE Trans Geosci Remote Sen2014
52, 907 9109.

63. Liang, S.; Strahler, A.; Walthall, C. Retrieval of lasdrface albedo from satellite observations:
A simulation studyJ. Appl. Meteorol1999 38, 712 725.

64. Liang, S.; Stroeve, J.; Box, J. Mapping daily snow/ice shortwave broadband albeddddenate
Resolution Imaging Spectroradiome{® ODIS): The improve direct retrieval algorithm and



Remote Seng015 7 1014

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

7.

78.

79.

80.

validation with greenland in situ measurement. J. Geophys Res 2005 110

doi: 10.1029/2004JD005493

Wang, D.; Liang, S.; He, T.; Yu, Y. Direct estimation of land surface albedo VitRS data:
Algorithm improvement and preliminary validatiahGeophysRes Atmos2013 118 12577 12586.

Cui, Y.; Mitomi, Y.; Takamura, T. An empirical anisotropy correction model for estimating land
surface albedo for radiation budget studiRsmote Sen&nviron 2009 113 24 39.

Liang, S.L.; Fang, H.L.; Kaul, M.; Van Niel, T.G.; McVicar, T.R.; Pearlman, J.S.; Walthall, C.L.;
Daughtry, C.S.T.; Huemmrich, K.F. Estimation and validation of land surface broadband albedos
and leaf area index froB8BO-1 ALI data.lEEE Trans GeosciRemote Sen2003 41, 1260 1267.

He, T.; Liang, S.; Wang, D.; Shi, Q.; Tao, X. Estimation of figéolution land surface shortwave
albedo fromAVIRIS data.l[EEE J. Sel Top. Appl. Earth Obs Remote Sen2014 in press.

RahmanH.; Verstraete, M.; Pinty, B. Coupl&lrfaceAtmosphere Reflectand€SAR) model

1. Model description and inversion on synthetic dat@&eophysRes 1993 98, 20779 20801.
Lattanzio, A.; Schulz, J.; Matthews, J.; Okuyama, A.; Theodore, B.;, Jdhn Knapp, K.R;
Kosaka, Y.; Schuller, L. Land surface albedo from geostationary satellites: A multiagency
collaboration withifSCOPECM. Bull. Am Meteorol Soc 2013 94, 205 214.

Lattanzio, A.; Govaerts, Y.M.; Pinty, B. Consistency of surface anisotbgyacterization with
MeteosabbservationsAdv. Space Re®007, 2007, 131 135.

Knapp, K.R.; Frouin, R.; Kondragunta, S.; Prados, A. Toward aerosol optical depth retrievals over
land fromGOESvisible radiances: Determining surface reflectaheJ. Remote Sen2005 26,

4097 4116.

Popp, C.; Hauser, A.; Foppa, N.; Wunderle, S. Remote sensing of aerosol optical depthtoakr
Europe from MSG-SEVIRI data and accuracy assessment with gréhastd AERONET
measurements. GeophysRes Atmos 2007, 112, doi:10.1029/2007JD008423.

Geiger, B.; Carrer, D.; Franchisteguy, L.; Roujean, J.L.; Meurey, C. Land surface albedo derived
on a daily basis froriMleteosasecond generation observatiollsEE Trans Geosci Remote Sens

2008 46, 3841 3856.

Govaerts, Y.M.; Wagner, S.; Lattanzio, A.; Watts, P. Joint retrieval of surface reflectance and
aerosol optical depth fronMSG/SEVIRI observations with an optimal estimation approach:

1. Theory.J. GeophysRes Atmos 201Q 115, doi:10.1029/2009JD011779

Pinty, B.; Roveda, F.; Verstraete, M.; Gobron, N.; Govaerts, Y.; Martonchik, J.; Diner, D.; Kahn, R.
Surface albedo retrieval froMeteosatl. Theory.J. GeophysRes 200Q 105, 18099 18112.

Mei, L.; Xue, Y.; de Leeuw, G.; Holzétopp, T.; Guangl.; Li, Y.; Yang, L.; Xu, H.; Xu, X.; Li, C.

et al. Retrieval of aerosol optical depth over land based on a time series technique using
MSG/SEVIRI data.Atmos Chem Phys 2012 12, 9167 9185.

Govaerts, Y.M.; Lattanzio, A.; Pinty, B.; Schmetz, J. Consistent surface albedo retrieval from two
adjacent geostationary satellit€eophysRes Lett 2004 31, doi:10.1029/2004GL020418

Govaerts, Y.; Lattanzio, A.; Taberner, M.; Pinty, B. Genatagllobal surface albedo products
from multiple geostationary satellitd8emote Sen&nviron 2008 112, 2804 2816.

Govaerts, Y.; Lattanzio, A. Retrieval error estimation of surface albedo derived from geostationary
large band satellite observations: Aipgtion toMeteosat2 andMeteosat7 data.J. GeophysRes

2007, 112 doi:10.1029/2006JD007313



Remote Seng015 7 1015

81. Schaaf, C.; Cihlar, J.; Belward, A.; Dutton, ECV T8 Albedo andReflectance Anisotropy
Available online: http://159.226.251.229/videoplayer/GTEEV-T08-albedevl1l.pdf?
ich_u_r i=ff71917ef4860cbb27684b38e8b662%KN s t a r t=Rich_e n_d=&ich_k e y=1
54501890575056312248%8ch t y p e=&ich d i s k i d=&ich_u n_i t=1 (accessed on 8
October 2014).

82. Gao, F.; Schaf, C.; Strahler, A.; Roesch, A.; Lucht, W.; Dickinson,NRODIS bidirectional
reflectance distribution function and albedo climate modeling grid products and the variability of
albedo for major global vegetation typésseophysRes 2005 110, doi: 10.1029/2004JD005190

83. Martonchik, J.; Diner, D.; Kahn, R.; Ackerman, T.; Verstraete, M.; Pinty, B.; Gordon, H.
Techniques for the retrieval of aerosol properties over land and ocean using multiangle imaging.
IEEE Trans Geosci Remote Sen2002 36, 1213 1227.

84. Martonchik, J.; Diner, D.; Pinty, B.; Verstraete, M.; Myneni, R.; Knyazikhin, Y.; Gordon, H.
Determination of land and ocean reflective, radiative, and biophysical properties using multiangle
imaging.IEEE Trans Geosci Remote Sen2002 36, 1266 1281.

85. Martonchik, J.; Pinty, B.; Verstraete, M. Note on an improved model of siBRDE-atmospheric
coupled radiationEEE Trans Geosci Remote Sen2002 40, 1637 1639.

86. Diner, D.J.; Martonchik, J.V.; Borel, C.; Gerstl, S.A.W.; Gordon, H.R.; Knyazikhirlyneni, R.;

Pinty, B.; Mchel, V.M. Multi-Angle Imaging SpectrRadiometer Level 2 Surface Retrieval
Algorithm Theoretical Basjslet Propulsion Laboratoria Cafada Flintridge CA, USA,2008.

87. Bacour, C.; Breon, F. Variability of biome reflectance directional signatures as se@LBER
Remote Sen&nviron 2005 98, 807 95.

88. Bicheron, P.; Leroy, M. Bidirectional reflectance distribution function signatures of major biomes
observed from spacé. GeophysRes 200Q 105 26669 26681.

89. Hauteciur, O.; Leroy, M. Surface bidirection
scale byPOLDERADEOQOS. GeophysRes Lett 1998 25, 4197 4200.

90. Leroy,M.; Deuzé J.; Bré@n, F.; Hautecoeur, OHerman, M.; Buriez, J.; Tanré DBouffies, S.;
Chazette, P.; Roujean, J. Retrieval of atmospheric properties and surface bidirectional reflectances
over land fromPOLDERADEOQOS. J. GeophysRes 1997, 102, 17023 17037.

91. Muller, J. BRDFAIlbedo Retrieval Available online: http://www.brockmanrtonsult.
de/albedomap/pdf/MERIBIbedoMapATBD _BRDF_Albedel.0.pdf (accessed on 8 October 2014)

92. Barnsley, M.; Quaife, T.; Hobson, P.; Shaw, J.; Lewis, P.; Disney, M.; Muller, J.; Strahler, A.;
BarkerSchaaf, C.; Lucth W. Estimation of langurface albedo and biophysical properties using
SPOT4 VGT and semiempirical BRDF models. In Proceedings ofinternational SPOT4
Vegetation Conference, Stolkholm, Sweden, 25 April 2000

93. Brén, F.; Maignan, F.; Leroy, M.; Grant, Analysis of hot spot directional signatures measured
from spaced. GeophysRes 2002 107, 4283 4296.

94. Riihelg A.; Manninen, T.; Laine, V.; Andersson, K.; Kaspar, GLARA-SAL: A global 28 yr
timeseries oE a r tblacksky surface albed@tmos Chem Phys 2013 13, 3743 3762.

95. Govaerts, Y.M.; Pinty, B.; Taberner, M.; Lattanzio, A. Spectral conversion of surface albedo derived
from Meteosafirst generation observation&EEE GeosciRemote Senkett 2006 3, 23 27.



Remote Seng015 7 1016

96. Pinty, B.; Roveda, F.; Verstraedd,; Gobron, N.; Govaerts, Y.; Martonchik, J.; Diner, D.; Kahn, R.
Surface albedo retrieval fronMeteosat 2. Applications. J. Geophys Res 2000 105
18113 18134.

97. Loew, A.; Govaerts, Y. Towards multidecadal consistdeteosatsurface albedo time sesie
Remote Sen&01Q 2, 9574 967.

98. Geiger, B.; Roujean, JGarrer, D.; Meurey, CThe EUMETSAT Satellite Application Facility on
Land Surface Analysis LSA SAF). Available online: http://landsaf.meteo.pt/
GetDocument.do?id=46accessedn 8 October 2014

99. VanlLeeuwen, W.J.D.; Roujean, J.L. Land surface albedo from the synergistic use oER3ar (
and geestationary MSG) observing systemsAn assessment of physical uncertainties.
Remote Sen&nviron 2002 81, 273 289.

100. Muller, J-P.; Lgez, G.; Watsor(3.; Shane, N.; Kennedy, T.; Yuen, P.; Lewis, P.H8A Globalbedo
Project for Mappingthe Ear t hés Land fob (5 Yieascfeom Buropeand Sensors
Available online: http://www.mssl.ucl.ac.uk/~pcy/papers/MulBdobAlbedeabstractV4.pdf
(accessedn 8 October 2014).

101. Liu, Q.; Wang, L.; Qu, Y.; Liu, N.; Tang, H.; Liang, S.; Liu, S. Preliminary evaluation of thetésng
glass albedo produdnt. J. Digit. Earth 2013 6, 5i 33.

102. Liang, S.; Zhao, X.; Yuan, W.; Liu, S.; Cheng, X.; Xiao, Z.; Zhang, Xi; Q.; Cheng, J.; Tang, H.
et al. A long-term Global LAnd Surface Satellit¢GLASS) dataset for environmental studies.
Int. J. Digit. Earth2013 6, 69 95.

103. He, T.;Liang, S.; Song, D. Analysis of global land surface albedo climatologgatthitemporal
variation during 198/ 2010 from multiple satellite productd. GeophysRes Atmos 2014 119
10281 10298

104. Liu, J.; Schaaf, C.; Strahler, A.; Jiao, Z.; Shuai, Y.; Zhang, Q.; Roman, M.; Augustine, J.A,;
Dutton, E.G.Validation of Moderate Resolution Imaging SpectroradiomddODIS) albedo
retrieval algorithm: Dependence of albedo on solar zenith adgéeophys Res 2009 114,
doi:10.1029/2008JD009969

105. Salomon, J.G.; Schaaf, C.B.; Strahler, A.H.; Gao, F.; Jin, Y. Validation M@12!S bidirectional
reflectance distribution function and albedo retrievals using combined observations from the aqua
and terra platformsEEE Trans Geosci Remote Sen2006 44, 1555 1565.

106. Roma, M.O.; Schaaf, C.B.; Lewis, P.; Gao, F.; Anderson, G.P.; Privette, J.L.; Strahler, A.H.;
Woodcock, C.E.; Barnsley, M. Assessing the coupling between surface albedo deriveiDiti s
and the fraction of diffuse skylight over spayatharacterized landscap&emote Seng&nviron
201Q 114, 738 760.

107. Schaaf, C.B.; Wang, Z.; Strahler, A.H. CommentarydMangandZende& MODIS snow albedo
bias at high solar zenith angles relative to theory anah tsitu observations inGreenland
Remote Sen&nviron 2011, 115 1296 1300.

108. Wang, X.; Zender, C.340DIS snow albedo bias at high solar zenith angles relative to theory and
to in situobservations ireenlandRemote Sen&nviron 201Q 114, 563 575.

109. Wang, Z. TheModerateResolution Imaging Spectroradiomet®tODIS) Reflectance Anisotropy
andAlbedo of Dormantand SnowCovered Canopies$?h.D Thesis,Boston University Boston,
MA, USA, 2011.



Remote Seng015 7 1017

110. Jin, Y.; Schaaf, C.B.; Gao, F.; Li, X.; Strahler, A.H.; Lucht, W.; Liang, S. ConsistendO&flS
surface bidirectional reflectance distribution function and albedo retrievals: 1. Algorithm performance.
J. GeophysRes Atmos 2003 108 doi:10.1029/2002JD002803

111. Jin, Y.; Schaaf, C.B.; Woodcock, C.E.; Gao, F.; Li, X.; Strahler, A.H.; Lucht, W.; Liang, S.
Consistency of modis surface bidirectional reflectance distribution function and albedo retrievals:
2. Validation.J. Geophys. Res. Atmd003, 108, doi:10.1029/2002JD002804

112. Shuai, Y.; Schaaf, C.B.; Strahler, A.H.; Liu, J.; Jiao, Z. Quality assessméRDFalbedo
retrievals in MODIS operational system. Geophys Res Lett 2008 35
doi: 10.1029/2007GL032568

113. Baldocchi, D.; Falge, E.; G L.; Olson, R.; Hollinger, D.; Running, S.; Anthoni, P.; Bernhofer, C.;
Davis, K.; Evans, R. Fluxnet: A new tool to study the temporal and spatial variability of
ecosystenscale carbon dioxide, water vapor, and energy flux dendgids. Am Meteorol Soc
2001, 82, 2415 2434.

114. Ohmura, A.; Gilgen, H.; Hegner, H.; Mdler, G.; Wild, M.; Dutton, E.G.; Forgan, B.; Frdnlich, C;
Philipona, R.; Heimo, A. BaselinBurface Radiation NetworfBSRN'WCRP): New precision
radiometry for climate researdBull. Am Meteorol Soc 1998 79, 2115 2136.

115. Augustine, J.A.; DeLuisi, J.J.; Long, C.SURFRADS A national surface radiation budget
network for atmospheric resear&ull. Am Meteorol Soc 200Q 81, 2341 2357.

116. Steffen, K.; Box, J.; Abdalati, W. Greenlar@@limate Network (GGNet). Available online:
http://cires.colorado.edu/science/groups/steffen/gcnet/ (accessed on 8 October 2014)

117. Cescdi, A.; Marcolla, B.; Santhana Vannan, S.K.; Pan, J.Y.; Rom&, M.O.; Yang, X.; Ciais, P.;
Cook, R.B.; Law, B.E.; Matteucci, Gntercomparison oMODIS albedo retrievals anoh situ
measurements across the global fluxnet netwReknote Seng&nviron 2012 121, 323 334.

118. Liu, N.; Liu, Q.; Wang, L.; Liang, S.; Wen, J.; Qu, Y.; Liu, S. A statisbhesed temporal filter
algorithm tomap spatiotemporally continuous shortwave albedo WdDIS data.Hydrol. Earth
Syst Sci 2013 17, 2121 2129.

119. Ju, J.; Roy, D.P.; Shuai, Y.; Schaaf, C. Development of an approach for generation of temporally
complete daily nadiMODIS reflectance time s@s.Remote Sen&nviron 2010 114, 1i 20.

120. Samain, O.; Geiger, B.; Roujean, J.L. Spectral normalization and fusion of optical sensors for the
retrieval of BRDF and albedo: Application ttEGETATION, MODIS, and MERIS data sets.
IEEE Trans Geosci RemoteSens2006 44, 3166 3179.

121. Quaife, T.; Lewis, P. Temporal constraints on lir@&DF model parametertEEE Trans. Geosci.
Remote Seng01Q 48, 2445 2450.

122. Moody, E.G.; King, M.D.; Platnick, S.; Schaaf, C.B.; Gao, F. Spatially complete global spectral
suiface albedos: Valuadded datasets derived from teM®DIS land productslEEE Trans.
Geosci. Remote SerZ)05 43, 144 158.

123. Fang, H.; Liang, S.; Kim, H.Y.; Townshend, J.R.; Schaaf, C.L.; Strahler, A.H.; Dickinson, R.E.
Developing a spatially continuous 1 km surface albedo data setNovdr Americafrom terra
MODIS products.J. GeophysRes Atmos 2007, 112, doi:10.1029/20060008377

124. Fang, H.; Liang, S.; Townshend, J.R.; Dickinson, R.E. Spatially and temporally contiilcdesta
sets based on an integrated filtering method: ExamplesNiath AmericaRemote Seng&nviron
2008 112 75 93.






