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Abstract. The fraction of absorbed photosynthetically active radiation (FAPAR) is a critical land surface vari-
able for carbon cycle modeling and ecological monitoring. Several global FAPAR products have been released
and have become widely used; however, spatiotemporal inconsistency remains a large issue for the current prod-
ucts, and their spatial resolutions and accuracies can hardly meet the user requirements. An effective solution to
improve the spatiotemporal continuity and accuracy of FAPAR products is to take better advantage of the tem-
poral information in the satellite data using deep learning approaches. In this study, the latest version (V6) of the
FAPAR product with a 250 m resolution was generated from Moderate Resolution Imaging Spectroradiometer
(MODIS) surface reflectance data and other information, as part of the Global LAnd Surface Satellite (GLASS)
product suite. In addition, it was aggregated to multiple coarser resolutions (up to 0.25◦ and monthly). Three
existing global FAPAR products (MODIS Collection 6; GLASS V5; and PRoject for On-Board Autonomy–
Vegetation, PROBA-V, V1) were used to generate the time-series training samples, which were used to develop
a bidirectional long short-term memory (Bi-LSTM) model. Direct validation using high-resolution FAPAR maps
from the Validation of Land European Remote sensing Instrument (VALERI) and ImagineS networks revealed
that the GLASS V6 FAPAR product has a higher accuracy than PROBA-V, MODIS, and GLASS V5, with an
R2 value of 0.80 and root-mean-square errors (RMSEs) of 0.10–0.11 at the 250 m, 500 m, and 3 km scales,
and a higher percentage (72 %) of retrievals for meeting the accuracy requirement of 0.1. Global spatial evalu-
ation and temporal comparison at the AmeriFlux and National Ecological Observatory Network (NEON) sites
revealed that the GLASS V6 FAPAR has a greater spatiotemporal continuity and reflects the variations in the
vegetation better than the GLASS V5 FAPAR. The higher quality of the GLASS V6 FAPAR is attributed to
the ability of the Bi-LSTM model, which involves high-quality training samples and combines the strengths of
the existing FAPAR products, as well as the temporal and spectral information from the MODIS surface re-
flectance data and other information. The 250 m 8 d GLASS V6 FAPAR product for 2020 is freely available at
https://doi.org/10.5281/zenodo.6405564 and https://doi.org/10.5281/zenodo.6430925 (Ma, 2022a, b) as well as
at the University of Maryland for 2000–2021 (http://glass.umd.edu/FAPAR/MODIS/250m, last access 1 Novem-
ber 2022).
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1 Introduction

Long-term satellite remote sensing observations of terrestrial
vegetation are critical for understanding and monitoring cli-
mate change. Vegetation influences the global carbon cycle
and climate by taking up atmospheric CO2 through photo-
synthesis (Knorr et al., 2010). This can be constrained by the
energy absorption capacity of the vegetation, and the terres-
trial variable related to this process is the fraction of absorbed
photosynthetically active radiation (FAPAR). FAPAR is de-
fined as the fraction of the downward surface visible solar
radiation (400–700 nm) absorbed by the green elements of
plants (Gower et al., 1999). It has been recognized as one
of the essential climate variables (GCOS, 2022) and is di-
rectly linked to the productivity of vegetation (Kaminski et
al., 2012; Mccallum et al., 2009; Smith et al., 2020). FAPAR
is not only dependent on the canopy structure, leaf properties,
and soil albedo but is also dependent on the illumination con-
ditions. FAPAR under direct illumination is called the black-
sky FAPAR, and FAPAR under diffuse illumination is called
the white-sky FAPAR (Baret et al., 2013; Liu et al., 2019).

Monitoring changes in the FAPAR using satellites sensors
plays an important role in energy balance and carbon cy-
cle modeling. Currently, several global moderate-resolution
satellite FAPAR products have been generated and released
to the public, including the Sea-viewing Wide Field-of-view
Sensor (SeaWiFS) (Gobron et al., 2006), Moderate Res-
olution Imaging Spectroradiometer (MODIS) (Knyazikhin
et al., 1998), Medium Resolution Imaging Spectrometer
(MERIS) (Bacour et al., 2006), Geoland2/BioPar version
1 (GEOV1) (Baret et al., 2013), PRoject for On-Board
Autonomy–Vegetation (PROBA-V) (Fuster et al., 2020), and
Global LAnd Surface Satellite (GLASS) (Liang et al., 2021;
Xiao et al., 2015) products. These products have been applied
in different research areas such as primary productivity cal-
culations (Zhang et al., 2014), the monitoring of vegetation
health (Ivits et al., 2016; Cammalleri et al., 2019; Gobron
et al., 2005), crop yield investigations (Dong et al., 2016),
and carbon cycle data assimilation in terrestrial ecosystems
(Knorr et al., 2010; Smith et al., 2020).

There are two typical types of algorithms for retriev-
ing the FAPAR from satellite data: statistical-model-based
and radiative-transfer-model-based algorithms. For example,
several studies have estimated FAPAR by establishing the re-
lationship between the vegetation index (VI) and in situ FA-
PAR measurements using simple statistical methods or ma-
chine learning models (Gitelson et al., 2014; Muller et al.,
2020; Camacho et al., 2021), while other studies have es-
timated FAPAR based on energy balance inside the canopy
using radiative transfer models (Zhang et al., 2021; Xiao et
al., 2015; Liu et al., 2019). Although many satellite products
have been generated using these two types of methods, and
their accuracies have been evaluated and intercompared in
many studies (M. Weiss et al., 2014; Tao et al., 2015; Xiao et
al., 2018; Putzenlechner et al., 2019), these algorithms usu-

ally only use single-phase remote sensing data, and the criti-
cal temporal information contained in the satellite signals is
often ignored.

One of the largest problems with the current land surface
products is their spatiotemporal inconsistency (Fang et al.,
2019; M. Weiss et al., 2014). Owing to the presence of clouds
and aerosol contamination in the input observation data, the
satellite products usually contain data gaps and outliers, and
they are also plagued by a serious lack of data under special
geographical and meteorological conditions, such as in trop-
ical forests and high-latitude areas (Camacho et al., 2013).
Although many studies have tried to fill these data gaps us-
ing either statistical temporal and spatial filtering approaches
(D. J. Weiss et al., 2014; Li et al., 2017) or data assimila-
tion methods that exploit dynamic models and ancillary vari-
ables (Chernetskiy et al., 2017; Ma et al., 2022), their per-
formance is affected by many factors, such as abrupt land
surface changes and cloud cover lasting for a long period of
time.

In addition, the targeted FAPAR accuracy and spatial reso-
lution values required by the Global Climate Observing Sys-
tem (GCOS) are 0.05 and 200 m, respectively. However, the
global FAPAR product with the highest spatial resolution
(300 m) product (i.e., the PROBA-V product) begins in 2014,
which cannot meet the requirement for long time-series data
in climate change applications. The reported uncertainties of
the current FAPAR products vary from 0.08 to 0.23 (Tao et
al., 2015; M. Weiss et al., 2014; Pickett-Heaps et al., 2014).
Brown et al. (2020) recently evaluated the MODIS, Visible
Infrared Imager Radiometer Suite (VIIRS), and PROBA-V
FAPAR products over North America and revealed that the
PROBA-V product has a higher agreement with field refer-
ence data and a better temporal continuity than the MODIS
FAPAR and VIIRS FAPAR products. There is an urgent need
to develop a 250 m FAPAR product from MODIS surface re-
flectance data owing to the much longer time period of the
MODIS data (i.e., from 2000 to present).

The use of the temporal information contained in the
original satellite data, which is ignored by the abovemen-
tioned FAPAR estimation algorithms, may be an effective
way to improve the spatiotemporal continuity and accuracy
of the FAPAR. Recently, by generating a new version of the
GLASS leaf area index (LAI) product with a 250 m resolu-
tion based on a bidirectional long short-term memory (Bi-
LSTM) deep learning approach (Ma and Liang, 2022a), we
have demonstrated that the temporal information in satel-
lite observations is extremely useful for generating high-level
products with better spatiotemporal continuity and higher ac-
curacy, and the Bi-LSTM model outperforms the general re-
gression neural network (GRNN), LSTM, and gated recur-
rent unit (GRU) in learning the temporal relationship be-
tween satellite surface reflectance and a vegetation variable.
To maintain consistency with the GLASS LAI product, in
this study, we applied the same strategy to produce a 250 m
FAPAR product from MODIS data.
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2 Data

2.1 Satellite products

This deep learning approach for FAPAR production capital-
izes on the existing global FAPAR products. Three widely
used global FAPAR products (MODIS Collection 6, GLASS
V5, and PROBA-V1 FAPAR) were fused to generate the true
values of the FAPAR time series to create a training dataset.

The MODIS 8 d 500 m FAPAR product (MCD15A2H,
Collection 6) was inverted from the MODIS red and near-
infrared surface reflectance based on lookup tables simulated
using a three-dimensional radiative transfer model for eight
biome types. When this main algorithm fails, a backup so-
lution that links the normalized difference vegetation index
(NDVI) to FAPAR is adopted (Myneni et al., 2015; Yan et al.,
2016). The MODIS FAPAR corresponds to the instantaneous
black-sky FAPAR values (i.e., under direct illumination) at
10:30 LST (local solar time). As the MODIS FAPAR is not
retrieved over barren, permanent snow- and ice-covered land,
the value is set to zero over these non-vegetated pixels.
The Copernicus Global Land Service (CGLS) 10 d 300 m
PROBA-V FAPAR (V1) is generated from the PROBA-V
blue, red, and near-infrared (NIR) surface reflectance data
using an artificial neural network (ANN) (Baret et al., 2016).
The instantaneous FAPAR is estimated first, and smooth-
ing and gap filling are then applied over a compositing time
window. The PROBA-V FAPAR is defined as the instanta-
neous black-sky FAPAR values (i.e., under direct illumina-
tion) at 10:00 LST. The GLASS V5 FAPAR is derived from
the GLASS LAI and clumping index products based on the
energy balance inside the canopy and soil (Xiao et al., 2015).
It mainly considers transmittance of photosynthetically ac-
tive radiation (PAR) under direct illumination and represents
the clear-sky FAPAR at 10:30 LT (local time). Although the
FAPAR definitions of the three products are somewhat differ-
ent, according to previous studies, the impact of these differ-
ences on FAPAR’s largest difference is less than a few per-
cent compared to the uncertainties of the products (Martínez
et al., 2013; Weiss et al., 2007). Thus, the differences in the
FAPAR definitions were ignored in this study. In addition,
these three products can be used to approximate the daily in-
tegrated FAPAR, which is more commonly needed by users
than the instantaneous FAPAR. This hypothesis is based on
several studies that have reported that the instantaneous FA-
PAR value at 10:00–10:30 LST (or 14:00–14:30 LST) is very
close to the daily average FAPAR value under clear-sky con-
ditions (Baret et al., 2007; Fensholt et al., 2004). Therefore,
the goal of this study was to estimate the black-sky FAPAR
around 10:30 LST, which is an approximation of the daily
average FAPAR.

The 8 d GLASS V6 LAI product was adopted as a poten-
tial input feature for the model training, as the LAI has been
recognized as one of the most sensitive parameters for FA-
PAR estimation in previous studies (Xiao et al., 2015; Liu

et al., 2019). The 8 d 500 m and 250 m GLASS LAI (V6)
were produced from a Bi-LSTM model and from MODIS
surface reflectance data. The time series of training samples
were generated from three existing LAI products (MODIS,
PROBA-V, and GLASS V5) using K-means clustering anal-
ysis and the least difference criteria. Direct validation using
79 high-resolution LAI reference maps from three in situ ob-
servation networks revealed that the GLASS V6 LAI had
the highest accuracy among the current LAI products, with
a root-mean-square error (RMSE) of 0.92 at a resolution of
250 m and 0.86 at a resolution of 500 m, while the RMSE
of PROBA-V was 0.98 at a resolution of 300 m, and those of
GLASS V5 and MODIS C6 were 1.08 and 0.95, respectively,
at a resolution of 500 m (Ma and Liang, 2022a).

The MODIS surface reflectance product was used as the
observation data for the training of the deep learning model
and the FAPAR estimation. In the model training process, as
the time series of the 8 d FAPAR samples created from the
existing FAPAR products has a 500 m spatial resolution, the
8 d 500 m surface reflectance product (MOD09A1, V6) was
used in the model training process. In addition, the 250 m
surface reflectance product (MOD09Q1, V6) aims to produce
the 250 m FAPAR data and only provides the red and NIR
bands at 645 and 858 nm, respectively. Therefore, only the
first two red and NIR bands (b1 and b2) and the three solar
and satellite angles (solar zenith angle θs, view zenith angle
θv, and relative azimuth angle ϕ) of MOD09A1 were used in
this study.

Although the MODIS surface reflectance has been atmo-
spherically corrected for gases, aerosols, and Rayleigh scat-
tering, residual noise caused by clouds still exists. To remain
consistent with the GLASS LAI algorithm, the surface re-
flectance was not smoothed, and only the pixels with re-
flectance values outside the [0,1] range, or without atmo-
spheric correction (θs > 85◦), were set to zero.

As the MODIS, PROBA-V, and GLASS V5 FAPAR prod-
ucts provide data from 2000, 2014, and 2000 to the present,
respectively, the five overlapping years (2014–2018) were se-
lected to generate the global training samples and to test the
suitable temporal length for producing the FAPAR. To avoid
the invalid values contained in the data samples, FAPAR val-
ues outside of the [0,1] range were set to zero.

2.2 Field FAPAR data

The field FAPAR data used to validate the accuracy of the
FAPAR products were collected from 38 sites in the Vali-
dation of Land European Remote sensing Instrument (VA-
LERI) (Baret et al., 2005) and ImagineS (Fuster et al., 2020)
networks with different land cover types. The ground data
were derived from the digital hemispherical photos (DHPs)
and represent the fraction of the intercepted PAR (FIPAR),
which is considered to be nearly the same as FAPAR (Brown
et al., 2020; Weiss et al., 2007). The ground FAPAR measure-
ments were locally regressed using the Landsat or Satellite
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Pour l’Observation de la Terre (SPOT) satellite reflectance
to generate 62 high-resolution FAPAR reference maps with
scales of 20 or 30 m (Table S1 in the Supplement), which
were then reprojected onto the MODIS sinusoidal projection
and aggregated to 250 and 500 m resolutions to validate the
FAPAR products at these resolutions. The high-resolution
maps from the Validation of Land European Remote sens-
ing Instrument (VALERI) and ImagineS were also aggre-
gated to a 3 km resolution, and the other field FAPAR val-
ues that represent a 3 km area were collected from the DI-
RECT dataset (Garrigues et al., 2008). A total of 111 refer-
ence values were used to validate the FAPAR products at the
3 km resolution. As the field-measured FAPAR is paired with
the field-measured LAI, the quality of the field FAPAR was
kept consistent with that of the LAI, and the quality was con-
trolled using the relationship between the NDVI and LAI in
our previous study (Ma and Liang, 2022a).

To evaluate the temporal consistency of the FAPAR prod-
ucts, we collected the time series of field FAPAR data from
two AmeriFlux sites (Novick et al., 2018): the “Bartlett ex-
perimental forest site” (US-Bar) and the “Mead-irrigated
maize–soybean rotation site” (US-Ne2). The incoming and
outgoing flux as well as the flux transmitted through the
canopy to the ground were sampled at 30 min intervals, with
tower measurement heights of 25 and 5 m for the US-Bar and
US-Ne2 sites, respectively. The FAPAR was calculated as the
ratio of the measured APAR to the PAR, and the sampled FA-
PAR values were averaged over the±30 min time window of
the MODIS overpass time (10:30 LT) to produce field FA-
PAR references for the product comparison. We also used
multiyear field measurements (2014–2020) for 10 National
Ecological Observatory Network (NEON) sites (Table S2
in the Supplement) for the temporal consistency evaluation
of the FAPAR products. This dataset was provided by the
Ground-Based Observations for Validation (GBOV) of the
Copernicus Global Land Service (https://land.copernicus.eu/
global/gbov/, last access: 1 November 2022). The field FA-
PAR of the NEON sites was derived from the DHPs and rep-
resent the instantaneous black-sky FAPAR at 10:00 LT. The
spatial representativeness of the NEON sites is about 1.5 km.
However, as the AmeriFlux and NEON measurements are
tower based, their spatial representativeness is not as explicit
as that of the VALERI and ImagineS reference data, so they
were only used for intercomparison at the 500 m scale.

3 Methods

The workflow of the algorithm used to generate the 250 m
FAPAR is shown in Fig. 1. A deep learning approach that ex-
ploits the temporal information in the satellite signals and the
current products was adopted to produce the 250 m GLASS
V6 FAPAR. The MODIS, GLASS V5, and PROBA-V FA-
PAR products were used to generate the time series of true
values of FAPAR for the global representative sample pixels.

Figure 1. Workflow of the algorithm used to generate the GLASS
V6 250 m FAPAR.

The Bi-LSTM model, which was used to produce the GLASS
V6 LAI, was used to determine the relationship between the
time series of FAPAR and the surface reflectance data.

3.1 Creating global training samples

As FAPAR is physically related to LAI (Mota et al., 2021),
the same sample pixels in the GLASS V6 LAI algorithm
were used in this study. These globally distributed represen-
tative 52 997 sample pixels (Fig. S1 in the Supplement) were
selected based on global time-series LAI cluster analysis and
the least difference criterion as well as by assuming that the
LAI values of the three products with the lowest mean square
errors (MSEs) were representative of the true values for a
specific pixel (Ma and Liang, 2022a).

In each sample pixel that can represent a time-series
profile of the land surface and satellite observation condi-
tions, the differences among the MODIS, PROBA-V, and
GLASS V5 FAPARs should be the lowest because the LAIs
of these products are the least different. To create the time
series of the FAPAR true values, for each 8 d time step
from 2014 to 2018, if the difference between the PROBA-
V and GLASS V5 FAPARs was less than 0.1, their av-
erage was used as the true value; otherwise, the median
value of the MODIS, PROBA-V, and GLASS V5 FAPARs
was used. As GLASS V5 and PROBA-V FAPAR have rela-
tively smooth temporal profiles because of their pre- or post-
process smoothing algorithms, the created FAPAR samples
inherited both their smoothness and accuracy at the selected
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sample pixels. The histogram distribution of the fused FA-
PAR values (maximum, average, and all values of the time
series) for the representative pixels as well as the GLASS V5,
MODIS, and PROBA-V FAPARs for the global land pixels
are shown in Fig. 2. Their distributions are quite consistent,
indicating that the time series of FAPAR samples are globally
representative.

The corresponding 2014–2018 time series of MODIS
500 m surface reflectance (MOD09A1) and the GLASS V6
500 m LAI for the representative pixels were extracted and
were used as the control variables of the data samples. We
randomly selected 70 % of the samples to train the deep
learning model, 20 % to select the optimal deep learning
model, and 10 % to evaluate the final model.

3.2 Bi-LSTM model

The Bi-LSTM is a variant of the LSTM and contains forward
and backward recurrent net layers (Graves and Schmidhuber,
2005), which are connected to each other and to the output
layer. Thus, it can process both the previous and future infor-
mation of the time series during each time step. The LSTM
is involved from the recurrent neural network (RNN), which
can process a sequence of data with gaps using its internal
memory state. The LSTM is based on its ability to selec-
tively retain or discard relevant information by modulating
the information flow using the input, output, and forget gates
as well as the cell state (Yildirim, 2018). The structure of the
Bi-LSTM has been described by Ma and Liang (2022a).

The structure of the Bi-LSTM model used for the FAPAR
estimation had four layers: an input layer, a Bi-LSTM layer
with 200 neurons, a dropout layer (5 %), and a regression
layer. The Adam optimizer, an initial learning rate of 0.0001,
a batch size of 100, and a maximum number of epochs of
100 were set as the parameters for the model training. The
time series of the red and NIR reflectance, three angles of
the MODIS surface reflectance, and the GLASS V6 500 m
LAI were set as the features of the input layer. First, models
trained using datasets with two combinations of feature sets
(with or without LAI) and a temporal length of 1 year were
explored to optimize the input features. Then, the temporal
length of the datasets was evaluated to determine the suit-
able length of the Bi-LSTM model for FAPAR production.
Five temporal lengths with a minimum length of 1 year and
a maximum length of 5 years were used in this study. The
coefficient of determination (R2), the RMSE, and the bias
were used to evaluate the models’ performance. Finally, the
Bi-LSTM model with the optimal feature set and temporal
length was retrained to obtain the final 250 m FAPAR prod-
uct model.

3.3 Estimating the 250 m resolution FAPAR

The final trained Bi-LSTM model was used to produce FA-
PAR with an 8 d frequency and 250 m resolution. In line with

the model evaluation results (Sect. 4.1), the MODIS 250 m
surface reflectance and the GLASS 250 m LAI were used
as the input data of the model, and the optimal temporal
length used to estimate the FAPAR was determined to be
3 years. Owing to the training error of the model, the derived
time series of FAPAR at the connections of two time win-
dows may be discontinuous, and the same post-processing
of the GLASS V6 LAI was adopted here. First, the GLASS
FAPAR was calculated in the 2000–2002, 2002–2004, . . .,
2018–2020 time windows, which took about 48 h for a time
window using a single graphics processing unit (GPU). As
the connection years (2002, 2004, . . ., 2018) were calculated
twice, they were assigned a weight function to obtain the fi-
nal FAPAR estimates of these years.

The weight function (w) of the GLASS V6 LAI algorithm
was adopted:

w =



0 (1≤ t ≤ 4)

0.5 ·
(

cos
(
−π ·t

37 +
π ·42
37

)
+ 1

)
(5≤ t ≤ 42)

1 (43≤ t ≤ 50)

0.5 ·
(

cos
(
π ·t
37 −

π ·51
37

)
+ 1

)
(51≤ t ≤ 88)

0 (89≤ t ≤ 92).

(1)

The FAPAR at time step t for the connection or current year
(fapart ) was calculated as follows:

fapart = fapar1t+46 ·wt+46+ fapar2t ·wt (1≤ t ≤ 46), (2)

where fapar1 is the time series of FAPAR for the previous
and current year, and fapar2 is that for the current and fol-
lowing year. Taking the year 2002 as an example, fapar1 is
the time series of FAPAR for 2001–2002, and fapar2 is that
for 2002–2003. Because MODIS began collecting data on 24
February 2000, for the 2000–2002 calculation window, the
missing data at the beginning days of 2000 were substituted
by 2001 to fit the trained model, and the final FAPAR product
begins from day of the year (DOY) 57.

3.4 Quality assessment of the GLASS V6 FAPAR
product

To quantify the accuracy of the GLASS V6 FAPAR prod-
uct, we extracted its values in the areas of the correspond-
ing VALERI and ImagineS sites at the original 250 m reso-
lution, and we aggregated them to resolutions of 500 m and
3 km by averaging to enable direct validation at the 250 m,
500 m, and 3 km scales. To compare the three FAPAR prod-
ucts used in this study, the corresponding MODIS, PROBA-
V, and GLASS V5 FAPAR values were also extracted and
aggregated.

We then assessed the spatial consistency of the GLASS
V6 FAPAR product by displaying and analyzing the global
distribution of the FAPAR maps in January and July of 2018
as well as two cloud-dominated and two middle- to high-
latitude areas: the Yungui district in southwestern China, the
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Figure 2. Histogram distribution of the FAPAR values (bin width of 0.02) of the 2014–2018 time series of fused FAPAR samples for the
representative pixels and of the MODIS, PROBA-V, and GLASS V5 FAPARs for the global land pixels: (a) max FAPAR is the distribution of
the maximum FAPAR values of the 2014–2018 time series, (b) mean FAPAR is the distribution of the mean FAPAR values of the 2014–2018
time series, and (c) FAPAR is the distribution of all of the FAPAR values of the 2014–2018 time series.

Congo Rainforest in central Africa, the central European re-
gion, and the Alaskan region. The temporal consistency of
the time series of FAPAR from 2000 to 2020 was also as-
sessed at 18 typical sites with representative biome types. Fi-
nally, we demonstrated the 2021 8 d time series of FAPAR
images at one 1◦× 1◦ cloud-dominated region in southwest-
ern China for the spatiotemporal consistency assessment.

4 Results

4.1 Evaluation of the Bi-LSTM model

The performance of the Bi-LSTM models trained using
datasets with two different combinations of feature sets and
a length of 1 year are shown in Table 1. The results indi-
cate that incorporating the LAI as one feature of the input
improves the accuracy of the model. This finding is consis-
tent with those of many previous studies – that is, the LAI is
an important variable for estimating the FAPAR (Tao et al.,
2016).

The evaluation results for different temporal lengths are
shown in Fig. 3. The RMSE decreases with increasing tem-
poral length from 1 to 5 years for the training, validation,
and test datasets. However, the turning point is a length of
3 years, so we set 3 years as the suitable temporal length for
the production of the FAPAR. Using the optimal features and
temporal length, we retrained the Bi-LSTM model, and the
accuracy of the final model is listed in the last row of Table 1.

4.2 Direct validation of FAPAR products

The four FAPAR products were directly validated against
field measurements at different scales. The 300 m PROBA-V
and 250 m GLASS V6 FAPAR were validated at the 250 m
scale; the 500 m MODIS, GLASS V5, and GLASS V6 FA-
PARs were validated at the 500 m scale; and all four of the

Figure 3. Evaluation of the temporal length of the Bi-LSTM model.

products were aggregated to 3 km and validated at the 3 km
scale.

The target accuracy requirement of the GCOS for the
global FAPAR product is 0.05; however, meeting this re-
quirement remains a large challenge due to the uncertain-
ties of both the field measurements and the regression-based
high-resolution FAPAR reference maps. Therefore, we used
the same FAPAR requirement of 0.1 adopted by Brown et
al. (2020) to evaluate the PROBA-V FAPAR product, and
we denoted a metric P to represent the percentage of pixels
meeting the target accuracy requirement in our validation.

The validation results for the PROBA-V and GLASS V6
FAPAR products at the 250 m scale are shown in Fig. 4.
Using 23 upscaled high-resolution FAPAR reference maps
for 2014 to 2016 obtained from the ImagineS network, the
GLASS V6 achieved a slightly higher accuracy than the
PROBA-V, with R2 values of 0.80 and 0.78 and RMSE val-
ues of 0.11 and 0.12, respectively. By adding the remaining
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Table 1. Accuracies of Bi-LSTM models with different combinations of features.

Training Validation Test

R2 RMSE Bias R2 RMSE Bias R2 RMSE Bias

b1, b2, θs, θv, ϕ 0.955 0.056 0.004 0.953 0.058 0.005 0.952 0.058 0.004
b1, b2, θs, θv, ϕ, LAI 0.962 0.051 −0.005 0.962 0.052 −0.005 0.961 0.052 −0.004
Final Bi-LSTM model 0.964 0.050 0.000 0.964 0.050 0.000 0.963 0.051 0.000

39 reference maps from the VALERI network from 2000 to
2013 (the PROBA-V FAPAR is not available during this time
period), the RMSE of the GLASS V6 was reduced to 0.10
(Fig. 4c).

The validation results for the MODIS, GLASS V5, and
GLASS V6 500 m FAPAR products at the 500 m scale based
on 62 upscaled reference FAPAR maps are shown in Fig. 5.
The GLASS V6 had the highest accuracy (R2

= 0.80 and
RMSE= 0.10), followed by GLASS V5 and MODIS (both
R2
= 0.69 and RMSE= 0.13). The MODIS FAPAR had

fewer validation points than GLASS FAPAR because of the
missing data, and it had the largest bias of 0.07 at these
sites. The validation results for the MODIS, GLASS V5,
and GLASS V6 FAPAR products at the 3 km scale obtained
using the DIRECT dataset for 2000 to 2017 are shown in
Fig. 6. The GLASS V6 matched the most data points with the
field reference (N = 111). Consistent with the 500 m valida-
tion results, the GLASS V6 FAPAR had the highest accuracy
(R2
= 0.81, RMSE= 0.11).

Table 2 lists the accuracies of each FAPAR product for
the different biome types at three scales validated using the
reference data from 2000 and 2017, except for PROBA-V
(2014–2016). The RMSEs of the GLASS V6 FAPAR are
0.06–0.14, and all of them are less than those of the GLASS
V5, MODIS, and PROBA-V at the three scales for the differ-
ent biome types, except for the shrub and savanna biomes at
the 250 m scale.

With respect to assessing the accuracy of the product in
terms of meeting the target requirement, the GLASS V6 FA-
PAR had the highest percentage of pixels with P values
greater than 70 % at all three scales, whereas the PROBA-
V, MODIS, and GLASS V5 FAPARs had lower percentages,
with P values of 54 % to 66 %.

4.3 Spatial consistency evaluation

Examples of the global spatial distributions of the MODIS,
PROBA-V, GLASS V5, and GLASS V6 FAPAR products
in January and July of 2018 are shown in Fig. 7. The four
products were found to have similar spatial consistencies.
It should be noted that the gray areas correspond to miss-
ing data for the vegetated land surface. The MODIS and
PROBA-V FAPARs contain missing data in January in the
high-latitude region of the Northern Hemisphere, which is
due to cloud/snow contamination or the weak signals of the

satellite observations. The GLASS V5 FAPAR cannot pro-
vide values above 70◦, which is the same as the GLASS V5
LAI, due to the poor representation in these areas during the
machine learning model development. GLASS V6 is the only
product that provides full land coverage in winter and sum-
mer. The first reason for this is that the input GLASS V6 LAI
is spatially and temporally continuous globally, and the sec-
ond is that the Bi-LSTM model can extract the information
from the entire time series and assign a value to each time
step provided that valid surface reflectance and LAI data are
input.

The spatial distributions of the FAPAR products in two
cloud-dominated and two middle- to high-latitude regions
are shown in Fig. 8. For the Yungui district in south-
ern China, the MODIS and PROBA-V products had large
missing data rates of 56 % and 51 %, respectively, whereas
the GLASS products were spatially complete. In central
Africa, the MODIS product had a missing data rate of 15 %;
the PROBA-V product provided more valid data than the
MODIS product, but it had lower values compared with the
GLASS products. In central Europe, GLASS V6 is more con-
sistent with PROBA-V with respect to textures and values.
In Alaska, MODIS contains 17 % data gaps, and PROBA-
V exhibits higher FAPAR than others in the lower right re-
gions of Fig. 8d. By comparing the GLASS V5 and V6
products, it was found that V6 was spatially smoother than
V5, and it exhibited more details, such as the outline of the
river. The reason GLASS V5 contains more noise is that it
is based on the traditional surface reflectance filtering pro-
cess, which inevitably introduces noise and uncertainties, es-
pecially in cloud-dominated areas. These cases further con-
firm that the GLASS V6 product had the highest spatial con-
sistency among the current products in the cloud-dominated
areas.

4.4 Temporal consistency evaluation

The time series of the MODIS, PROBA-V, GLASS V5, and
GLASS V6 FAPAR products at eight DIRECT and Amer-
iFlux sites are shown in Fig. 9. The spatial representative-
ness of the field FAPAR at the DIRECT sites (Fig. 9a–
f) is 3 km; therefore, the aggregated 3 km FAPAR products
were plotted. As the measurements from the AmeriFlux sites
(Fig. 9g–h) are at the tower footprint scale, the corresponding
500 m FAPAR products were extracted and plotted. During
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Figure 4. Direct validation of the (a) PROBA-V and (b) GLASS V6 FAPAR products at the 250 m scale using 23 upscaled high-resolution
FAPAR reference maps from 2014 to 2016 from the ImagineS network. (c) Direct validation of the GLASS V6 FAPAR product at the 250 m
scale using 62 high-resolution FAPAR reference maps from 2000 to 2016 from the Bigfoot, VALERI, and ImagineS networks. The red
dashed lines denote the accuracy requirement (P ).

Figure 5. Direct validation of the (a) MODIS, (b) GLASS V5, and (c) GLASS V6 FAPAR products at the 500 m scale using 62 upscaled
high-resolution FAPAR reference maps from 2000 to 2016 from the Bigfoot, VALERI, and ImagineS networks.

the growing seasons, the MODIS, PROBA-V, and GLASS
products agree well with each other, but the PROBA-V FA-
PAR has lower values and MODIS has discrete nonstable
time series of profiles at the Counami site (Fig. 9b). At the
Fundulea cropland site, which has multiple growing seasons,
the MODIS, PROBA-V, and GLASS V6 products reflect
the multiple growing seasons of the vegetation, while the
GLASS V5 product is less sensitive to seasonal variations.
At the US-Ne2 cropland and US-Bar forest sites, for which
continuous field FAPAR data are available, the four FAPAR
products are closer to the field data at the US-Bar site than
at the US-Ne2 site. This is due to the spatial representative-
ness of the tower measurements and the fact that the US-Bar
site has a larger footprint and is more homogeneous than the
US-Ne2 site (Tao et al., 2015).

The time series of FAPAR of the four products at their
original spatial resolutions and the field references at 10
NEON sites are shown in Fig. 10. Generally, the MODIS
and GLASS V6 products agree with the field references bet-
ter than the PROBA-V and GLASS V5 products. At the
NEON forest sites, the four products are slightly underes-

timated compared with the field values. The upper envelope
of the MODIS product is closer to the field reference val-
ues, but it contains more noise than the other three products.
The GLASS V6 FAPAR has more realistic seasonal trends
than the V5 product, especially at the site shown in Fig.
10g, where the V5 FAPAR has abnormal seasonality. This
is caused by the input of the GLASS V5 LAI data, which
have been found to exhibit unrealistic seasonal variations in
high-latitude areas. Based on the analysis of the products at
these typical sites, the GLASS V6 product was found to have
more stable and continuous time-series trends than the other
products, and it is an obvious improvement compared with
the older version.

The GLASS V6 time series of FAPARs in one 1◦× 1◦ re-
gion in southwestern China in 2021 are shown in Fig. 11.
The seasonal variations in vegetation FAPAR can be clearly
observed, consistent with the previous evaluation results, and
the GLASS V6 FAPAR product is spatiotemporally seamless
at this cloud-dominated region.
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Figure 6. Direct validation of the (a) MODIS, (b) GLASS V5, and (c) GLASS V6 FAPAR products at the 3 km scale using the DIRECT
ground measurement dataset from 2000 to 2017.

Table 2. Direct validation of the four FAPAR products at the 250 m, 500 m, and 3 km scales using FAPAR reference maps from 2000 to 2016
for different biome types.

PROBA- ∗GLASS GLASS MODIS GLASS GLASS MODIS GLASS GLASS
V 250 m V6 250 m V6 250 m 500 m V5 500 m V6 500 m 3 km V5 3 km V6 3 km

forest R2 0.76 0.90 0.78 0.55 0.59 0.73 0.54 0.05 0.01
RMSE 0.09 0.09 0.09 0.12 0.11 0.09 0.13 0.07 0.06
Bias −0.01 0.06 0.02 0.07 0.05 0.04 −0.08 −0.03 −0.02
N 415 415 1858 410 432 432 7 7 7
P 83.9 % 73.3 % 73.8 % 63.9 % 57.6 % 75.9 % 85.7 % 100.0 % 100.0 %

shrub and R2 0.49 0.20 0.68 0.62 0.69 0.69 0.81 0.87 0.86
savanna RMSE 0.09 0.14 0.11 0.10 0.10 0.10 0.12 0.08 0.08

Bias −0.03 −0.08 −0.04 0.01 −0.01 −0.04 0.09 0.04 0.02
N 1137 1137 2249 560 601 601 15 15 16
P 87.2 % 66.4 % 76.0 % 77.0 % 82.4 % 76.9 % 46.7 % 80.0 % 81.3 %

grass R2 0.82 0.87 0.80 0.82 0.67 0.84 0.45 0.56 0.64
RMSE 0.12 0.10 0.11 0.11 0.13 0.10 0.16 0.15 0.14
Bias 0.03 0.01 0.00 0.05 0.00 0.01 0.05 0.04 0.04
N 1381 1381 2065 529 546 546 37 32 40
P 70.4 % 77.8 % 74.3 % 68.8 % 58.4 % 77.3 % 43.2 % 50.0 % 57.5 %

crop R2 0.79 0.83 0.82 0.60 0.64 0.79 0.60 0.72 0.77
RMSE 0.13 0.10 0.10 0.15 0.13 0.10 0.13 0.10 0.09
Bias 0.08 0.06 0.04 0.08 0.06 0.04 0.05 0.00 0.02
N 5858 5858 10891 2460 2678 2678 48 48 48
P 59.6 % 69.2 % 70.6 % 47.7 % 56.6 % 69.7 % 60.4 % 66.7 % 79.2 %

∗ GLASS V6 250 m validation results are obtained using the same data points as those used for PROBA-V.

5 Data availability

The 250 m 8 d GLASS V6 FAPAR product for 2020 is
freely available at https://doi.org/10.5281/zenodo.6405564
and https://doi.org/10.5281/zenodo.6430925 (Ma, 2022a, b)
as well as at the University of Maryland for 2000–2021
(http://glass.umd.edu/FAPAR/MODIS/250m, last access 1
November 2022, Ma and Liang, 2022b). We have also aggre-
gated it to coarser resolutions (500 m 8 d, 0.05◦ 8 d, 0.1◦ per
month, and 0.25◦ per month; http://glass.umd.edu/FAPAR/

MODIS/, last access: 1 November 2022, Ma, and Liang,
2022c). The 250 and 500 m data are in the sinusoidal pro-
jection, whereas the 0.05, 0.1, and 0.25◦ data are in the ge-
ographic latitude and longitude coordinate system. The data
files are provided in Hierarchical Data Format – Earth Ob-
serving Systems (HDF-EOS) format.

The GLASS V6 LAI dataset was downloaded from
http://www.glass.umd.edu/LAI/MODIS/250m/ (last access:
1 November 2022, Ma, and Liang, 2022d). The MODIS and
PROBA-V products were downloaded from https://earthdata.
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Figure 7. Global spatial distributions of the MODIS, PROB-V, GLASS V5, and GLASS V6 FAPARs in January and July of 2018: (a)
MODIS, January 2018; (b) MODIS, July 2018; (c) PROBA-V, January 2018; (d) PROBA-V, July 2018; (e) GLASS V5, January 2018; (f)
GLASS V5, July 2018; (g) GLASS V6, January 2018; and (h) GLASS V6, July 2018. The spatial resolution is 0.05◦ latitude and longitude.

nasa.gov/ (last access: 1 November 2022) and https://land.
copernicus.eu/global/products/fapar (last access: 1 Novem-
ber 2022), respectively.

6 Conclusions

In this study, the GLASS FAPAR product with a 250 m spa-
tial resolution was derived from MODIS surface reflectance
data. To our knowledge, this is the global long-time-series
FAPAR product for 2000–2021 with the highest spatial res-
olution. The time series of FAPAR samples used for the

model training were created by merging the existing MODIS,
PROBA-V, and GLASS V5 FAPAR products using globally
distributed representative samples. The red and NIR bands;
the solar zenith, view zenith, and relative azimuth angles ob-
tained from the 250 m MODIS surface reflectance product;
and the 250 m GLASS LAI data were used as the features
to predict the FAPAR values. The time series of GLASS V6
FAPAR was generated using the trained model at an opti-
mal temporal length of 3 years. The accuracy and spatiotem-
poral consistency of the GLASS V6 FAPAR was quanti-
fied and evaluated through validation against field reference
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Figure 8. Spatial distribution of MODIS, PROB-V, GLASS V5, and V6 FAPARs on DOY 177 in 2018 in four regions: (a) the Yungui district
in southwestern China; (b) the Congo Rainforest in central Africa; (c) central Europe; and (d) Alaska. The spatial resolution is 500 m latitude
and longitude.

data and was compared with the MODIS, PROBA-V, and
GLASS V5 FAPAR products. Through validation using 62
high-resolution FAPAR reference maps from the VALERI
and ImagineS networks and 111 reference values from DI-
RECT, the GLASS V6 FAPAR product was demonstrated
to have the best agreement with the reference data, with an
R2 value of 0.80 and RMSEs of 0.10–0.11 at the 250 m,
500 m, and 3 km scales, and the highest percentage (72 %)
of retrievals in terms of meeting the accuracy requirements.
In terms of the spatiotemporal consistency evaluation, the
GLASS V6 FAPAR was demonstrated to have global cov-

erage without missing data, maintain high quality even in
cloud-dominated areas, exhibit consistent temporal profiles,
and reflect the seasonal variations in the vegetation well.

The GLASS V6 FAPAR product is the first global long-
term FAPAR product with a resolution of 250 m. The higher
quality of the GLASS V6 FAPAR is attributed to the abil-
ity of the Bi-LSTM model to exploit the advantages of the
existing FAPAR products as well as to extract the tempo-
ral and spectral information from the MODIS observations
and the GLASS LAI product. However, the accuracy still
needs to be improved to fully meet the GCOS accuracy re-
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Figure 9. (a–f) Aggregated 3 km time series of MODIS, GLASS V5, GLASS V6, and PROBA-V FAPAR products at six DIRECT sites with
different types of biomes during 2000–2020 and (g–h) 500 m time series of FAPAR products at two AmeriFlux sites.

Figure 10. Time series of FAPARs from the MODIS 500 m, GLASS V5 500 m, GLASS V6 250 m, and PROBA-V 300 m products at 10
NEON sites during 2014–2018.
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Figure 11. GLASS V6 time series of FAPARs in a 1◦× 1◦ region in southwestern China in 2021. The spatial resolution is 250 m latitude
and longitude.

quirements. One source of uncertainty is related to the dif-
ferences between the FAPAR definitions of the three FAPAR
datasets used in the model training process. These differences
may lead to a slight uncertainty, which was not explicitly ac-
counted for. More ground measurements for different ecosys-
tems under various conditions are needed to further evaluate
the FAPAR product.

Supplement. The supplement related to this article is available
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