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Widefield view (WFV) sensor onboard theChinese GF-1, thefirst satellite of the ChinaHigh-resolution EarthOb-
servation System, is acquiring multi-spectral data with decametric spatial resolution, high temporal resolution
and wide coverage, which are valuable data sources for environment monitoring. The objective of this study is
to develop a general and reliable fractional vegetation cover (FVC) estimation algorithm for GF-1 WFV data
under various land surface conditions. The algorithm is expected to estimate FVC from GF-1 WFV reflectance
data with spatial resolution of 16 m and temporal resolution of four dates. The proposed algorithm is based on
training back propagation neural networks (NNs) using PROSPECT + SAIL radiative transfer model simulations
for GF-1WFV canopy reflectance and corresponding FVC values. Green, red and near-infrared bands' reflectances
of GF-1WFV data are the input variables of the NNs, as well as the corresponding FVC is the output variable, and
finally 842,400 simulated samples covering various land surface conditions are used for training the NNs. A case
study in Weichang County of China, having abundant land cover types, was conducted to validate the perfor-
mance of the proposed FVC estimation algorithm for GF-1WFV data. The validation results showed that the pro-
posed algorithm worked effectively and generated reasonable FVC estimates with R2 = 0.790 and root mean
square error of 0.073 based on the field survey data. The proposed algorithm can be operated without prior
knowledge on the land cover and has the potential for routine production of high quality FVC products using
GF-1 WFV surface reflectance data.

© 2016 Elsevier Inc. All rights reserved.
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1. Introduction

Fractional vegetation cover (FVC),which refers to the fraction of green
vegetation seen from the nadir, is an important parameter for character-
izing the land surface vegetation conditions (Baret et al., 2013; Gitelson,
Kaufman, Stark, & Rundquist, 2002; Jia, Liang, Liu, et al., 2015; Zhang,
Liao, Li, & Sun, 2013). FVC is required for many weather prediction
models, regional and global climate models, hydrological models and
many other land surface models, and has been extensively used in appli-
cations of agriculture, soil erosion risk evaluation, drought monitoring,
environmental assessment (Gutman & Ignatov, 1998; Matsui, Lakshmi,
& Small, 2005; Roujean & Lacaze, 2002; Zhang et al., 2010). Therefore,
accurate and timely estimation of FVC on a large scale using high spatial
resolution remote sensing data is of great significance for many land sur-
face related applications. For example,water and soil conservation assess-
ments require high spatial and temporal resolution FVC data (Niu, Du,
jing Normal University, No.19
Wang, Zhang, & Chen, 2014), and the rapid FVC estimates from high
spatial resolution remote sensing data could be valuable for such similar
applications. The Chinese GF-1 is the first satellite of the Major National
Science and Technology Project of China, known as the China high-
resolution earth observation system. The GF-1 wide field view (WFV)
cameras acquire data with high spatial resolution, wide coverage and
high revisit frequency (Table 1), which are highly valuable data sources
for dynamic monitoring of land surface FVC on a large scale. However,
there is limited literature reporting the general algorithm for FVC estima-
tion from GF-1 WFV data. Therefore, exploring the application potential
and developing the land surface FVC monitoring methods are urgently
needed.

Currently, many FVC estimation algorithms using remote sensing
data have been developed, which mainly include empirical methods,
pixel unmixing models, and physical model based methods (Baret
et al., 2007; Bioucas-Dias et al., 2012; Guerschman et al., 2009; Jiapaer,
Chen, & Bao, 2011; Liang, Li, & Wang, 2012; Xiao & Moody, 2005). The
empirical methods are based on the statistical relationships between
FVC and vegetation indices or reflectance of specific wavebands (Xiao
& Moody, 2005). The normalized difference vegetation index (NDVI),
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Table 1
Technical specification of GF-1 WFV cameras.

Payloads Bands No. Spectral range (μm) Spatial resolution Swath width (km) Repetition cycle (day) Local time of descending node

WFV 1 0.45–0.52 16 800 (four cameras combined) 4 10:30 AM
2 0.52–0.59
3 0.63–0.69
4 0.77–0.89
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an index calculated from reflectance in the red and near-infrared (NIR)
wavebands, is themost frequently used vegetation index for developing
empirical FVC estimation models (Jiapaer et al., 2011). Moreover, some
other vegetation indices calculated from visible, NIR and short-wave
infrared wavebands, such as enhanced vegetation index (EVI), visible
atmospherically resistant index (VARI) and modified three-band maxi-
mal gradient difference vegetation index (MTGDVI), are also proposed
for FVC estimation due to the fact that NDVI may present larger uncer-
tainties in estimating FVC for very dense canopies or open canopies
with light or dark bare ground (Gitelson et al., 2002; Jiang, Huete,
Didan, & Miura, 2008; Jiapaer et al., 2011). The empirical methods are
computationally efficient for large remote sensing datasets and can
provide as accurate estimates of FVC in comparison to deterministic or
physically basedmodels in regional scales based on the accurate param-
eterization of the empirical models. However, a large amount of ground
measured training samples covering various vegetation types and
growth conditions are required for accurately parameterizing the
empirical models. In addition, one empirical model is greatly expected
to estimate FVC for a specific vegetation type in the specific region,
because the quantitative empirical relationship between FVC and vege-
tation indices or bands' reflectance is varyingwith vegetation types and
regions. For example, Graetz's linear regressionmodel was only suitable
for sparse grassland and his nonlinear regressionmodel was specific for
degraded grassland (Graetz, Pech, Gentle, & O'Callaghan, 1986). There-
fore, though there are somepublically available field survey FVC records
across most continents (Camacho, Cernicharo, Lacaze, Baret, & Weiss,
2013; Held, Phinn, Soto-Berelov, & Jones, 2015) that can be used to
build empirical models, the amount of the records is not enough for ac-
curately parameterizing the empirical models which need samples cov-
ering all situations encountered on the Earth's surface. Based on the
actual situations, it is costly and not a good choice for developing an em-
pirical FVC estimation algorithm of a specific sensor.

A pixel unmixing model estimates FVC at the sub-pixel level, with
the assumption that each pixel is composed of several components
and considering the proportion of the vegetation components as the
FVC (Jiapaer et al., 2011; Jimenez-Munoz et al., 2009; Phinn, Stanford,
Scarth, Murray, & Shyy, 2002). The dimidiate pixel model in the family
of pixel unmixing models has been widely used for FVC estimation
and has achieved many reliable results at the regional scales (Qi et al.,
2000; Wu, Li, Yon, Zhou, & Yan, 2004). For example, GF-1 WFV data
are evaluated to estimate FVC using dimidiate pixel model in the
Beijing-Tianjin-Hebei region (Zhan et al., 2014). However, a substantial
challenge in pixel unmixing model is how to determine endmembers
and the spectral response of endmembers because the land surface is
very complex, especially for developing the large-scale pixel unmixing
model. Therefore, pixel unmixing models are also not optimal for oper-
ationally estimating FVC from GF-1 WFV data.

Physical model based methods are based on the inversion of canopy
radiative transfermodels, which allow to simulate the physical relation-
ships between the vegetation canopy spectral reflectance and FVC (Jia,
Liang, Liu, et al., 2015). The physical model based methods establish
FVC estimation algorithms that consider more factors and elucidate
the physical relationship between remote sensing signal and FVC.
Thus, the physical model based methods are widely applicable for FVC
estimation in large scale. However, the direct inversion of radiative
transfer models is very difficult due to the complexity of the models.
Usually, neural networks (NNs) and lookup table methods are the two
typical alternative methods for indirect inversion of physical models,
and belong to the group of physical model based FVC estimation algo-
rithms. NNs method is based on training datasets simulated by the
physical models, and become one of the most important physically
based FVC estimation algorithms for their computational efficiency
and good performance (Baret et al., 2006; Roujean & Lacaze, 2002).
NNs trained over radiative transfer model simulations have been
applied with success to estimate FVC from several sensors, leading to
several operational FVC production algorithms, such as the POLDER
FVC product, which uses NNs and the Kuusk model (Roujean & Lacaze,
2002) and the MERIS and CYCLOPES FVC products, which use NNs and
the PROSPECT + SAIL model (Baret et al., 2007; García-Haro,
Camacho, & Meliá, 2008). Therefore, based on the reality of work in
the field of FVC estimation using remote sensing data, the NN inversion
of physical methods is a potentially accurate choice for operationally
estimating FVC from GF-1 WFV data.

The objective of this study is to develop a general and reliable FVC
estimation algorithm for GF-1 WFV reflectance data under various
land surface conditions. The algorithm is expected to operationally pro-
duce high quality FVC data fromGF-1WFV surface reflectance datawith
spatial resolution of 16 m and temporal resolution of four dates. To
achieve this objective, we firstly generate a learning dataset using the
PROSPECT + SAIL model with large range changes of input parameters
to cover various land surface conditions, and then train the NNs for FVC
estimation using GF-1 WFV reflectance data. Finally, a case study is
conducted to validate the effectiveness of the proposed FVC estimation
algorithm for GF-1 WFV data.

2. Methodology

The proposed FVC estimation algorithm for GF-1 WFV data was
based on a radiative transfer model inversion. The neural networks
approach was selected for the inversion because it was known to be
computationally very efficient. Additionally, it was indicated that NNs,
when trained over radiative transfer model simulations, could provide
accurate surface parameters estimations because of their efficient inter-
polation capacity (Baret et al., 2007; Fang & Liang, 2005; Leshno, Lin,
Pinkus, & Schocken, 1993). Therefore, the FVC estimation algorithm
development for GF-1 WFV data consisted of generating a learning
dataset using a radiative transfer model, training the NNs, and applying
the NNs to estimate FVC from GF-1 WFV data.

2.1. The Chinese GF-1 WFV data

TheGF-1 satellitewas launched from Jiuquan Satellite Launch Centre
(Gansu province, China) in April 2013, and a large amount of data have
been obtained since then. GF-1 satellite is in a sun-synchronous orbit at
an altitude of 645 km, and carries two panchromatic/multi-spectral
(P/MS) and four wide field view (WFV) cameras. The GF-1 WFV sen-
sor observes solar radiation reflected by the Earth in four spectral chan-
nels distributed in the visible andNIR spectral domain ranging from450
to 890 nm. GF-1 WFV data have a spatial resolution of 16 m and swath
width of 800 km with four cameras combined, as well as their high
frequency revisit time of four days (Wei et al., 2015). The technical spec-
ification for GF-1WFV cameras is shown in Table 1. The high-frequency
revisit time, wide coverage ability and decametric spatial resolution of
GF-1 WFV data make them highly suitable data sources for dynamic
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monitoring of land surface FVC on a large scale. Therefore, development
of FVC estimation algorithm for GF-1 WFV data is a significant work.
2.2. Generating the learning dataset

The radiative transfer model was run to simulate actual satellite
observations of canopy reflectance based on the relative spectral
response profiles of the GF-1 WFV sensor. The widely used SAIL model
with hot-spot correction, which assumed the canopy as a turbid medi-
um,was selected because of its ease of use, general robustness, and con-
sistent performance in validation practices (Jacquemoud et al., 2009;
Kuusk, 1991; Verhoef, 1984; Verhoef, Jia, Xiao, & Su, 2007). The canopy
structure in the SAIL model was characterized by leaf area index (LAI),
the average leaf angle inclination (ALA) assuming an ellipsoidal distri-
bution and the hot-spot parameter (Baret et al., 2007). To compute
the cover fraction under the assumption of a turbid medium, the classi-
cal gap fraction relationship with LAI and ALA was used, and FVC was
computed based on the gap fraction from nadir observations. The
PROSPECT model was used to simulate the leaf optical properties
(Jacquemoud & Baret, 1990). PROSPECT simulated leaf hemispherical
transmittance and reflectance using biochemical and biophysical pa-
rameters, including the leaf structure parameter (N), leaf chlorophyll
a + b concentration (Cab), water content (Cw), carotenoid content
(Car), brown pigment content (Cbrown) and dry matter content (Cm).
The coupled PROSPECT and SAIL model, also referred to as PROSAIL,
was then used to simulate the reflectance of vegetation canopies.
Because reasonable error of input variables in the radiative transfer
model was permitted and did not lead to loss of inversion accuracy,
some parameters in the PROSAILmodel could be fixed in the simulation
(Goel & Strebel, 1983; Qu, Zhang, & Wang, 2012). For the objective of
this study was to develop a general FVC estimation algorithm for GF-1
WFV data under various land surface conditions, the input variables
for the PROSAIL model (Table 2) were given reasonable ranges to
cover different land surface conditions based on previous studies, such
as the Leaf Optical Properties Experiment 93 and the algorithms of the
CYCLOPYS FVC product (Baret et al., 2007; Hosgood et al., 1990;
Jacquemoud et al., 2009; Qu, Wang, Wan, Li, & Zhou, 2008). Therefore,
the simulated learning dataset would have representativeness of differ-
ent land surface conditions.

Reflectance values of soils were also used as input variable for the
PROSAIL model. In this study, the soil reflectances were selected from
a globally distributed soil spectral library released by the International
Soil Reference and Information Centre (access at: http://www.isric.
org). The soil reflectances contained various soil types with different
properties (Shepherd, Palm, Gachengo, & Vanlauwe, 2003). Therefore,
the selection of these soil reflectance data in the PROSAIL model was
representative of various soil types. The original soil reflectance in
China had 47 sample locations and 245 profiles. To remove data redun-
dancy produced by similar soil reflectances and to avoid a huge calculat-
ed amount in the PROSAIL simulation, several representative soil
reflectances were determined from the original data. The spectral
angle mapper (Dennison, Halligan, & Roberts, 2004; Jia et al., 2011)
Table 2
The input variables of the PROSAIL model used to generate the training dataset.

Parameters Units Value range Step

LAI m2/m2 0–7 0.5
ALA ° 30–70 10
N – 1–2 0.5
Cab μg/cm2 30–60 10
Cm g/cm2 0.005–0.015 0.005
Car μg/cm2 0 –
Cw cm 0.005–0.015 0.005
Cbrown – 0–0.5 0.5
Hot – 0.1 –
Solar zenith angle ° 25–55 10
was selected to evaluate the similarity of different soil reflectances
and to further determine several representative soil reflectances used
in the PROSAIL model. Considering two spectral vectors with n
wavebands, where X= (x1, x2,…, xn) and Y= (y1, y2,…, yn), the spec-
tral angle could be defined as the following:

αXY ¼ cos−1
Xn
i¼1

xiyi=½ð
Xn
i¼1

x2i Þ1=2ð
Xn
i¼1

y2i Þ1=2�
" #

ð1Þ

where X and Y represent two different soil spectral reflectance vectors,
αXY is the spectral angle between the two spectral vectors X and Y, and
the value range of α is between 0 and π/2. The two spectral vectors
are completely similar when α = 0 and completely different when
α= π/2. When the value of α is between 0 and π/2, larger α values in-
dicate greater difference between the two spectral vectors. In this study,
soil reflectances with a spectral angle smaller than 0.05 would be con-
sidered as similar reflectance and these similar reflectances would be
averaged as a representative soil reflectance. Finally, 13 soil reflectances
were determined to represent the possible range of soil spectral shapes
(Fig. 1).

For any combination of the input variables, top of the canopy reflec-
tance was computed for each wavelength and then resampled to simu-
late the GF-1 WFV observations using the relative spectral response
profiles. A white Gaussian noise with a signal to noise ratio of 100 was
added to the simulated reflectances to account for uncertainties in the
satellite measurements and models. This simulation finally resulted in
842,400 cases of matched reflectances and FVC values, which were
used as the learning dataset for the NNs.

2.3. The neural networks

The NNs learn from a training dataset bymimicking human learning
ability to build relationships between variables, which are robust to
noisy data and can approximate multivariate non-linear relationships
(Ahmad, Kalra, & Stephen, 2010). Currently, NNs have been widely
used for estimating land surface variables from remote sensing data
(Baret et al., 2013; Jia, Liang, Liu, et al., 2015; Li et al., 2011; Verger,
Baret, & Camacho, 2011). Back propagation NNs (BPNNs), a popular
type of NNs, simply process nodes arranged into the different layers in-
cluding input, hidden and output layers. The principle of BPNNs can be
described as follows: For determining the output of the NNs for given
input data, the BPNNs calculate the difference between the obtained
output with the desired output, and then adjust the weights of the syn-
apses to minimize the difference until the overall error is below a
Fig. 1. Reflectance of the 13 soils used to represent the possible range of spectral shapes.

http://www.isric.org
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predetermined threshold (Foody, 1999; Jia, Liang, Wei, et al., 2015).
BPNNs have been used to estimate essential vegetation variables such
as LAI and FAPAR, and proved to be an effective algorithm (Baret et al.,
2007). Therefore, BPNNswere selected in this study to build the FVC es-
timation algorithm for the GF-1 WFV data. The training samples for the
BPNNs in this study were derived from the PROSAIL model simulations
whichmodeled the physical relationships between reflectance and FVC
with a large ranges of land surface conditions. The BPNNs could learn
from the training dataset and built the relationships between reflec-
tance and FVC under different land surface conditions, and then the
trained BNPPs could give optimal FVC estimates based on the actual re-
flectances of remote sensing data. This was the fundamental assump-
tion of using the BPNNs to estimate FVC from the modeled reflectance
values under various land surface conditions in this study.

The inputs of the BPNNs included surface reflectance of three GF-1
WFV bands: green (B2), red (B3) and NIR (B4). The blue band (B1) of
GF-1 WFV data was not used because the blue band was considered
easily contaminated by residual atmospheric effects. The output was
the corresponding FVC of the three bands' surface reflectance. The num-
ber of nodes in the hidden layer was set to 6. In the BPNNs, the activa-
tion functions in the hidden and output nodes were set to “sigmoid”
and “linear”, respectively. The Levenberg–Marquardt minimization
algorithm was used to calibrate the synaptic coefficients because of its
efficient convergence capacity (Jia, Liang, Wei, et al., 2015; Ngia &
Sjoberg, 2000). The learningdatasetmade of pairs of inputs and outputs,
whichwere derived from the PROSAILmodel simulations, was random-
ly split into two parts: 90% of the cases were used to train the BPNNs,
whereas the rest of the 10% of the cases were used to test the hyper-
specialization during the training process. The performance threshold
employed mean squared error as the indicator in the training process
was set to 0.005. Finally, after 414 iterations, the performance of the
training reached the predetermined goal, and the training of BPNNs
was completed.

2.4. FVC estimating procedure for GF-1 WFV data

NDVI was usually used to characterize vegetation conditions, distin-
guish vegetation and non-vegetation regions, and estimate FVC based
on a simple linear relationship between FVC and NDVI (Duan et al.,
2011; Gutman & Ignatov, 1998; Jiapaer et al., 2011). Therefore, it was
a good strategy to remove non-vegetation pixels using an NDVI thresh-
old value before FVC estimation using the NNs, which could avoid the
influence of non-vegetation pixels, such as the water body. A conserva-
tive NDVI threshold value of 0.05, which was usually used as the bare
soil NDVI in the dimidiate pixel model for FVC estimation (Zeng et al.,
Fig. 2. The geographic location of the study area: the whole scene of GF-1 WFV data
2000), was selected to identify the non-vegetation pixels. Finally, FVC
values in the identified non-vegetation regions would be set to zero,
whereas the other regionswould be estimated using the trained BPNNs.

3. Case study to validate the proposed algorithm

3.1. Study area and field survey data

A case study was conducted to validate the effectiveness of the
proposed FVC estimation algorithm for the GF-1 WFV data. The se-
lected study area was located inWeichang county of Hebei province,
China (Fig. 2). The study area is located in the North China region, in
the semi-humid and semi-dry climate region of the temperate zone.
The annual precipitation is approximately 500 mm, and the annual
average temperature is approximately −1.4 to 4.7 °C (Jia, Liang,
et al., 2014). A large amount of land cover types are distributed in
the study area, which include broad-leaf and coniferous forest, grass-
land, wetland, cropland, and residential area. Therefore, the complex
and abundant land cover compositions are very suitable to validate
the FVC estimation algorithm using GF-1 data based on the proposed
algorithm.

To acquire the field survey FVCdata, a ground survey of detailed veg-
etation distributions and growth conditions was conducted to select the
field measurement sites. Based on the ground survey, 39 sample sites
(approximately 30m× 30m)were selected in relatively homogeneous
regions with approximately 100m around the sample sites having sim-
ilar vegetation conditions (Fig. 2). Therefore, the field measurements in
the sample sites could match to the pixels of GF-1WFV data for the val-
idation of FVC estimates from these data. The 39 sample sites contained
three potato sites, three corn sites, two wheat sites, eight grass sites,
three wetland sites, three grass and shrub mixed sites, thirteen pine
sites, three white birch sites, and one pine and white birch mixed site.
The center geographic coordinates of each selected site were deter-
mined using a handheld global positioning system receiver (Trimble
JUNO SB) with a positioning accuracy of approximately ±3 m. The
field measurements were performed via digital photography using a
Nikon D90 camera from July 24th to 27th, 2014. Within each sample
site, usually five survey points were measured with one point at the
center of the site and the other four points located at the diagonal of
the square. For low vegetation types, the digital images were acquired
from the nadir at approximately two meters above the ground at each
survey point. Given the tall trees, such as pine and white birch, a
bottom-up direction was used to capture the tree canopy, and a top-
down direction was used for capturing the low vegetation underneath
the tree canopy. The field FVC in the forest regions was determined
(left), the subset study area (right) based on the standard false color composite.



188 K. Jia et al. / Remote Sensing of Environment 177 (2016) 184–191
using the following equation that accounts for the FVC of trees and un-
derstory vegetation viewed at the nadir direction between tree gaps
(Mu et al., 2015):

FVC ¼ f up þ 1− f up
� �

� f down ð2Þ

where fup and fdown are FVC values extracted from the photographs cap-
tured by the bottom-up and top-down directions, respectively.

The original digital images were stored in JPEG format, with a size of
4288 by 2848 pixels. To eliminate the distortion from central projection
of the digital camera, the edges (40% of the total image length and
width, respectively) of the images were cut, resulting in a subset
image to represent the survey point. The FVC of each subset image
was extracted using an improved method of Gaussian simulation and
segmentation method in CIE L*a*b* color space (Liu, Mu, Wang, & Yan,
Fig. 3. Examples for determination of FVC from camera images. The left pictures are origin
2012). The improved FVC extraction method introduced hue saturation
intensity (HSI) color space to equalize the intensity histogram for en-
hancing the brightness of shaded parts of the photo, and then the log-
normal distribution was used to fit the frequency of vegetation
greenness and to classify vegetation and background (Song, Mu, Yan,
& Huang, 2015). The improved FVC extraction method was indicated
as stable for FVC extraction from the digital images with varying back-
ground and shadow conditions. From the results, it could be observed
that FVC was effectively extracted for low vegetation types and white
birch (Fig. 3). However, FVC extracted for pine trees usually presented
lower values than the actual conditions, which was mainly caused by
the interruption of arborous branches and dark leaves not being identi-
fied. Therefore, the automatic FVC extraction method was not suitable
for pine trees. Instead, the maximum likelihood classifier (Duda &
Hart, 1973) was used to classify vegetation and background, and then
obtain accurate FVC from the photos of pine trees. The classification
al camera images, and the right pictures are the corresponding segmentation results.
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results were visually satisfactory for FVC extraction in the pine tree sites
(the bottom picture of Fig. 3).

3.2. Remote sensing data and preprocessing

GF-1 WFV multispectral data from the fourth camera covering the
study area were obtained on July 27th, 2014, which were synchronous
with the ground survey period. The image showed little cloud coverage
whereas over the study area was cloudless, and the quality of the mul-
tispectral data was good (Fig. 2). The GF-1 WFV data were released in
the form of a multi-band digital number (DN) grid. Preprocessing of
the GF-1 WFV data included radiance calibration, atmospheric correc-
tion, and geometric correction. The radiance calibration was to convert
the DN value of the raw image to surface spectral reflectance. First, the
DN value was converted to radiance using the following equation:

Le ¼ Gain � DNþ Offset ð3Þ

where Le is the radiance, and Gain and Offset are the calibration coeffi-
cients obtained from the China Centre for Resources Satellite Data and
Application (CRESDA).

The atmospheric correction of GF-1 WFV data was conducted using
the Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes
(FLAASH) algorithm. FLAASH was developed to provide accurate,
physically-based derivation of atmospheric properties, which was
derived from MODTRAN4, to incorporate those same quantities into a
correction matrix, and finally to invert ‘radiance-at-detector’ measure-
ments into the ‘reflectance-at-surface’ values (Cooley et al., 2002). For
the geometric corrections, four Landsat-8 Operational Land Imager
data (Jia,Wei, et al., 2014)with high quality, acquired in July andAugust
of 2014, were selected as the base map. The Landsat data had good con-
sistency with the field GPS values, and thus, the geometric correction
would be more helpful for locating the field sites with the geometric
corrected GF-1 WFV data. The geometric correction was conducted in
the environment of Erdas software, and a two-order polynomial trans-
formationwith bilinear interpolationwas used in the resampling. Final-
ly, 33 ground control pointsweremanually selected from the images, and
the resultant geometric co-registration error was less than one pixel of
the Landsat data (30 m). To avoid the influence of clouds and a large
calculated amount, a subset image consisting of 2986 × 2966 pixels,
which covered the area of interest, were extracted from the GF-1 WFV
datawithWorld Geodetic System84 (WGS-84) projection and 16m spa-
tial resolution (Fig. 2).

3.3. Assessment of FVC estimates using GF-1 WFV data

FVC estimation results using the proposed algorithm and the
preprocessed GF-1 WFV data are shown in Fig. 4. In the visual aspect,
the high FVC values are distributed in the forest and cropland regions,
Fig. 4. FVC (left) estimated using the proposed algorithm, NDVI (middle) calculated using the G
and NDVI over the study area.
whereas low FVC values are located in the grassland regions. The spatial
distribution of FVC estimates is reasonable. NDVI is an important indica-
tor for FVC conditions because FVC and NDVI display a linear relation-
ship in the dimidiate pixel model for FVC estimation (Jiapaer et al.,
2011); thus, the relationship between FVC and NDVI is used to remove
inconsistent samples in generating the training dataset used for devel-
oping the GEOV1 FVC product algorithm (Baret et al., 2013). Therefore,
the strong relationship between FVC and NDVI is a reliable indirect val-
idation indicator of the FVC estimation algorithm at a small regional
scale. Thus, the NDVI values calculated from bands three and four of
GF-1WFV data are also shown in Fig. 4 to indirectly validate the perfor-
mance of the proposed FVC estimation algorithm. It is clearly observed
that there is high spatial consistency between the estimated FVC and
NDVI values (Fig. 4). The density scatter plots are also shown to present
a detailed relationship between the estimated FVC and NDVI in the
study area (Fig. 4). A strong relationship between the estimated FVC
and NDVI values is observed, except for only a very small amount of
pixels. Because a linear regression between FVC and NDVI used for
FVC estimation at a regional scale could achieve high quality FVC esti-
mates, the comparison between the estimated FVC andNDVI could indi-
cate that the proposed FVC estimation algorithm for GF-1 WFV data is
reasonable and reliable.

Direct comparison using field survey data was carried out to evaluate
the performance of the proposed FVC estimation algorithm for GF-1WFV
data. The scatter plots of the estimated FVC and those calculated from the
field photos in the ground survey sites are shown in Fig. 5. The overall per-
formance (R2=0.790, RMSE=0.073) using all thefield data is presented
a satisfactory FVC estimation result which further confirms the reason-
ability and reliability of the proposed algorithm. The estimated FVC values
using the proposed algorithm in the pine sites are concentrated between
70% and 85% (Fig. 5). This is a reasonable distribution because the pines
are planted forests in the study area, which have similar forest canopy
structures. As for the potato and corn sites, they are in the growth peak
period and have very high FVC. These characteristics of potato and corn
are presented in the estimated FVC, which are all approximately 90%.
The leaves of grass are always threadlike in the study area and the FVC
of these grass sites are usually not high. Therefore, the FVC estimates
using the proposed algorithm are also reasonable for grassland. In addi-
tion, the error in geometrical registration between the field survey loca-
tion and the remote sensing data pixel is another factor leading to the
little differences between the estimated and field FVC.

Thus, in the case of not considering the uncertainty of FVC calcula-
tion using the field photos and excluding the errors derived from the
geometrical registration, almost all of the difference values between
the estimated and field FVC values are within ±10%. To assess the per-
formance of the proposed algorithm from another aspect, the NDVI
values in the field survey sites are also extracted and plotted against
the estimated FVC (Fig. 5). A clear linear relationship (R2 = 0.978) be-
tween the estimated FVC and NDVI is observed for all field survey
F-1WFV data, and the density plots (right) showing the relationship of the estimated FVC



Fig. 5. Comparison of the estimated FVC using the proposed method and that extracted from the field photos (left), and the relationship between the estimated FVC and NDVI (right).
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sites. This further indicates that the estimated FVC using the proposed
algorithm is reasonable. Therefore, it can be concluded from the above
analysis that the proposed FVC estimation algorithm for GF-1 WFV
data is reliable and a good choice to be used to routinely produce FVC
data from GF-1 WFV surface reflectance data.

4. Discussion and conclusions

This study proposed an algorithm for FVC estimation fromGF-1WFV
reflectance data based on training BPNNs with training samples gener-
ated from radiative transfermodel simulations. The proposed algorithm
has achieved satisfactory FVC estimation accuracy compared to the field
survey values and has the potential to operationally estimate FVC from
GF-1WFV surface reflectance data. It is automatically operated without
any prior knowledge on the land cover, and no human interaction and
empirically obtained parameters are required. Therefore, this method
could overcome the difficulties in determining the parameters in the em-
pirical method and pixel unmixing models for FVC estimation, which are
usually varied with vegetation types and regions. In addition, previous
studies on FVC estimation employing NNs based physical methods were
mainly focus on kilometric resolution remote sensing data and several
kilometric resolution FVC products were generated from SPOT-VET,
MERIS, MODIS and AVHRR sensors. This study developed NNs based
physical method for FVC estimation from decametric resolution data
was a new try, and FVC from decametric spatial resolution data would
be better suited for applications related to agriculture, ecosystem and en-
vironment management compared to kilometric resolution data which
were usually larger than the typical scales of most landscapes.

Furthermore, NDVI was usually strongly related with FVC at a small
regional scale and used in empirical methods and dimidiate pixel models
for small regional FVC estimateswith high accuracies (Jiapaer et al., 2011;
Zhang et al., 2013). Therefore, if the estimated FVC had a strong relation-
ship with NDVI at a small regional scale, it could indicate that the FVC es-
timations were reasonable and indirectly confirmed the proposed
method could achieve comparable performance with the empirical
methods using NDVI. However, the quantitative relationship between
FVC and NDVI was varied with different regions and conditions, leading
to the necessity of developing operational FVC estimation methods,
which was not so sensitive to vegetation types and backgrounds, instead
of empirical methods using NDVI. In this study, the estimated FVC using
the proposed algorithm andGF-1WFV surface reflectance data presented
a strong relationship with the NDVI values which indirectly indicated the
reasonability and reliability of the proposedmethod. In the case study, the
atmospheric and geometric correction of GF-1 WFV data is completed
manually. If the automatic preprocess approach of GF-1 WFV data being
developed, this will form a streamlined FVC estimation workflow from
the original released GF-1WFV DN values, which will make the FVC esti-
mation much simpler and accelerate GF-1 FVC product generation.

The accuracy assessment of the land surface parameters estimation al-
gorithm is another important issue, which is difficult to achieve because
of the difficulties in obtaining actual FVC fromfield surveys. Taking photos
from the vertical direction is considered as the optimal method for FVC
extraction in field surveys. However, using a bottom-up direction to esti-
mate tree FVC is not advisable, especially for dense tree canopies, because
the upper leaves are usually shielded by branches and trunks, which
would lead to underestimation of the actual FVC. Perhaps using an un-
manned aircraft system flying in the lower altitude is a suitable choice
for taking photos from the nadir and extracting FVC of tall vegetation
types. Another important issue is how to automatically extract FVC from
the photos of coniferous forest types because the needle leaves are in-
clined to be dark in the photos and not easily identified, which would
also lead to underestimation of the actual FVC. Supervised classification
methods are efficient for FVC extraction from photos of coniferous forest
types, but involving a lot of manual works. Therefore, an effective FVC ex-
traction algorithm from field photos still requires improvement. Though
the field survey FVC also has many uncertainties, it is still important for
assessing FVC estimation algorithms based on remote sensing data, and
more effective approaches are expected in the future.

In conclusion, the proposed FVC estimation algorithm for GF-1 data
is reliable and suitable for operationally producing FVC data using GF-
1 WFV surface reflectance data. Further work will focus on validating
the proposed algorithm in many other typical regions with various
land cover types using field survey FVC data with less measurement
uncertainties.
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