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ABSTRACT
Fractional vegetation cover (FVC) is an important parameter for
describing the land surface vegetation conditions and widely used
for land surface process simulations and global change studies.
Global FVC products are mainly derived from satellite data and
several global FVC products have been generated. Validation of
the satellite FVC products is important before they can be applied.
The objective of this study is to validate the newly generated
Global LAnd Surface Satellite (GLASS) FVC product based on the
time series of field FVC measurements in an agriculture region in
the Heihe Basin of Northwest China. The high spatial resolution
remotely sensed Advanced Spaceborne Thermal Emission and
Reflection Radiometer (ASTER) and Compact Airborne Imaging
Spectrometer (CASI) data were used to upscale the ground FVC
measurements to validate the GLASS FVC product at 0.5 km spatial
resolution. The results indicated that the GLASS FVC was highly
accurate with the coefficient of determination (R2) of 0.86 and
root-mean-square error (RMSE) of 0.087. Furthermore, the time
series FVC profiles were consistent with the crop growing charac-
teristics. It can be a reliable FVC product for agricultural
applications.
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1. Introduction

Vegetation is the basic component of terrestrial ecosystem and plays an important role
in biogeochemical cycling, energy exchange and hydrological cycling processes on the
earth surface (Zhang et al. 2013; Baret et al. 2007). Fractional vegetation cover (FVC),
defined as the fraction of green vegetation as seen from the nadir of the total statistical
area, is an important parameter for describing land surface vegetation conditions which
is also required for many land surface process models, weather prediction models,
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regional and global climate models, hydrological models and global change studies
(Baret et al. 2013; Gitelson et al. 2002; Zhang et al. 2013; Gutman and Ignatov 1998;
Matsui, Lakshmi, and Small 2005). Therefore, accurate and timely estimation of long-
term FVC on the global scale is of great significance for many land surface processes and
climate change studies as well as for its extensive applications in agriculture, forestry,
environment management, ecological monitoring, disaster risk monitoring, and drought
monitoring (Zeng et al. 2000; Roujean and Lacaze 2002; Godinez-Alvarez et al. 2009; Jia
et al. 2015).

Remote sensing provides the only feasible way to generate FVC products at the
global scale because of its ability to quickly provide broad, periodic and easily avail-
able observation data on the land surface (Jiapaer, Chen, and Bao 2011; Zeng
et al. 2000). Currently, several large scale FVC products have been produced using
remote sensing data, such as the POLarization and Directionality of the Earth’s
Reflectances (POLDER) FVC product (Roujean and Lacaze 2002), the Envisat MEdium
Resolution Imaging Spectrometer (MERIS) FVC product (Baret et al. 2006), the Spinning
Enhanced Visible and Infrared Imager (SEVIRI) FVC product (García-Haro, Camacho, and
Meliá 2008), the Change in Land Observational Products from an Ensemble of Satellites
(CYCLOPES) FVC product (Baret et al. 2007), and the Geoland-2/BioPar version 1
(GEOV1) FVC product (Baret et al. 2013). Before the FVC products can be applied, the
quality and accuracy of these products must be initially verified. Therefore, many
studies have been implemented to validate the existing FVC products (Fillol
et al. 2006; García-Haro, Camacho, and Meliá 2008; Mu et al. 2015). However, it can
be found that the accuracy validation results of these existing FVC products are
unsatisfactory. For example, the FVC products of SEVIRI and MERIS sensors have
good spatial consistency, but the MERIS FVC product presents systematically under-
estimate the FVC values approximately 0.1–0.2 (García-Haro, Camacho, and Meliá
2008); The CYCLOPES FVC product is higher than the SEVIRI FVC product by approxi-
mately 0.15, and the values of SEVIRI FVC product lies between those of the MERIS and
CYCLOPES FVC products, but the validation reports note that the values of the
CYCLOPES FVC product are lower than those values of spatial aggregation from high
spatial resolution Satellite Pour l’Observation de la Terre (SPOT) data, thus the FVC
products of SEVIRI, MERIS and CYCLOPES all underestimate FVC in some extent. The
GEOV1 FVC product is generated by correcting the systematic underestimation of
the CYCLOPES FVC product and considered being closer to the ground FVC estimates
(Camacho et al. 2013). However, the validation of GEOV1 FVC product in an agriculture
region indicates that it overestimates FVC by up to 0.2 in this cropland (Mu et al. 2015).
Therefore, the extensive accuracy assessment of FVC products is of great significant for
accurately application of remote sensing data derived FVC products.

The Global LAnd Surface Satellite (GLASS) FVC product is a newly generated global
FVC product from Moderate Resolution Imaging Spectroradiometer (MODIS) data
using machine learning methods based on the training samples generated from
global distributed high spatial resolution satellite data (Jia et al. 2015; Yang
et al. 2016). The initial validation of GLASS FVC product using global distributed 44
reference data from validation of land European remote sensing instruments (VALERI,
accessed at: http://w3.avignon.inra.fr/valeri) sites indicates that the GLASS FVC pro-
duct has comparable accuracy with GEOV1 FVC product (Jia et al. 2015). Furthermore,
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the spatial and temporal comparisons between GLASS and GEOV1 FVC products
show that the GLASS FVC product has much better spatial and temporal continuities.
Thus, the GLASS FVC product is also a reliable long-term global FVC product for
related applications. Extensive assessment of GLASS FVC product based on more
ground data is very important for in-depth understanding of this new generated
global FVC product. Therefore, this study aims to validate the GLASS FVC product
based on time series ground FVC measurements covering the whole growth periods
of the major crop type in an agriculture region, whereas the agriculture monitoring is
one of the major application fields of FVC data.

2. Materials and methods

Validation of these coarse spatial resolution FVC products is usually difficult to achieve
because ground point FVC measurements are not suitable for direct comparisons due to
the surface heterogeneity (Morisette et al. 2006; Jia et al. 2015). Using high spatial
resolution remote sensing data to scale the ground FVC measurements up to coarse
spatial resolution pixels for evaluating is always a suitable choice (Liang et al. 2002).
Therefore, the strategy for validating the GLASS FVC product in the agricultural region is
based on the high spatial resolution FVC data upscaled from the ground FVC measure-
ments. The ground FVC measurements and high spatial resolution remote sensing data
including the Advanced Spaceborne Thermal Emission and Reflection Radiometer
(ASTER) and airborne Compact Airborne Imaging Spectrometer (CASI) data are acquired
during the Heihe Watershed Allied Telemetry Experimental Research (HiWATER) project
in an oasis agriculture region of Heihe River Basin, China (Li et al. 2013; Mu et al. 2015).
The ASTER and CASI data upscale the time series field FVC measurements covering the
whole crop growth season using a statistical model. The GLASS FVC product is tempo-
rally interpolated and re-projected to match the ASTER and CASI FVC reference data, and
then FVC values from each pixel of the GLASS FVC product are directly compared with
the averaged FVC value from their spatial matched ASTER and CASI FVC pixels. Finally,
the accuracy indicators including root-mean-square error (RMSE) and coefficient of
determination (R2) are used to evaluate the performance of the GLASS FVC product.

2.1. GLASS FVC product from MODIS data

The GLASS FVC product is supported by the China’s National High Technology Research
and Development Program which aims to generate long term global land surface
parameters. The algorithm for GLASS FVC product from MODIS data is firstly generated
using general regression neural networks (GRNNs) method with training samples
derived from global sampled Landsat Thematic Mapper (TM) and Enhanced Thematic
Mapper plus (ETM+) data (Jia et al. 2015). However, in the process of generating long
term global GLASS FVC product, it is found that the computational efficiency of GRNNs
method is not satisfactory. Therefore, four machine learning methods including back-
propagation neural networks (BPNNs), GRNNs, support vector regression (SVR), and
multivariate adaptive regression splines (MARS), are evaluated using the same training
samples to find out an suitable algorithm for generating GLASS FVC product that has
both accuracy comparable to the GRNNs method and satisfactory computational
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efficiency (Yang et al. 2016). Finally, the MARS method is found to be a suitable
algorithm for generating the long term GLASS FVC product (Yang et al. 2016).

The temporal and spatial resolutions of GLASS FVC product from MODIS data are
8 days and 0.5 km with a sinusoidal grid projection. The initial validation results of this
FVC product present a comparable estimation accuracy with the GEOV1 FVC product,
whereas the temporal and spatial continuities are much better than it (Yang et al. 2016;
Jia et al. 2015). Therefore, comprehensive evaluation of the GLASS FVC product in typical
vegetation regions is more helpful to further understand the performance of the newly
generated global FVC product.

2.2. Study area

The study area is selected in the middle reaches of Heihe River Basin located in the
Northwest China (Mu et al. 2015; Li et al. 2013). The central geographical coordinates of
the study area is approximately latitude 38°52′N and longitude 100°22′E, covering an
area of approximately 36 km2 (Figure 1). The study area is part of an oasis region with
annual mean temperature and precipitation approximately 7 ~ 10°C and 140 mm,
respectively. The major part of the oasis is used as cropland and the dominated crop
type is corn, which is planted in May and harvested in September. Small patches of
orchards, vegetables and wheat are also found in the agriculture region.

2.3. Field FVC measurements

The field FVC measurements were conducted from 30 May to 3 September in 2012,
covering the whole growing season of corn. The field survey frequency was initially
5 days before late July and increased to 10 days afterward. Twenty-two sampling sites
were selected throughout the study area, in which sixteen sites were located in corn
fields. The size of each site was approximately 10 m × 10 m for the low vegetation types

Figure 1. The geographical location of the study area.

850 K. JIA ET AL.



such as corn and 30 m × 30 m for tall vegetation types such as orchards (Mu et al. 2015).
Land surface for cropland and orchards was homogeneous in the study area, such that
the sampling site significantly represented an ASTER pixel scale and ground measure-
ments at sampling sites were considered as ground truth FVC of high spatial resolution
pixels for upscaling.

The field FVC data were quantitatively measured using digital photography. The
photographs of low vegetation types were acquired from the nadir with a long stick
equipped with a camera at the end. For the tall trees in the orchard, a top-down
direction was used to take photographs of low vegetation under the tree crown,
whereas a bottom-up direction was used to capture the tree crown. In addition, when
taking the photographs on the cropland sites, the camera was fixed vertically downward
at a certain height to guarantee that at least two rows existed in one photograph and
the center of the photograph was located at the center of the interrow between the
crop rows (Ren et al. 2013). This strategy improved the representativeness of the field
FVC measurements at the patch scale. Nine photographs were taken along with the two
diagonals of the squared sampling site in each site, and the FVC estimates from the nine
photographs were averaged to estimate the FVC for the sampling site of low vegetation
types (Mu et al. 2015). As for the sampling sites of tall vegetation types, the FVC was
calculated using the following equation that accounted for the FVC of tree and unders-
tory vegetation viewed at the nadir direction between tree gaps:

FVC ¼ FVCup þ 1� FVCup
� �� FVCdown (1)

where FVCup and FVCdown were FVC values extracted from the photographs captured by
the bottom-up and top-down directions, respectively.

The FVC of a digital photograph was defined as the percentage of vegetation pixel
number to the total pixel number. Firstly, the photograph edges were removed to
eliminate the perspective effect and the distortion of the image, which could cause a
systematic error of FVC estimation (Zhao et al. 2012). Then, the FVC of each photo-
graph was estimated using a Gaussian simulation and segmentation method in the
Commission Internationale de L’Eclairage (CIE) L*a*b color space (Liu et al. 2012; Song
et al. 2015). This method separated green vegetation and non-vegetation pixels
through histogram clustering which supported that green vegetation and back-
ground distribution of greenness in the color space were Gaussian, and then com-
puted the FVC of a single photograph (Liu et al. 2012). The visual observations of the
FVC estimation results showed that the FVC estimates from each digital photographs
were acceptable.

2.4. FVC reference maps derived from ASTER and CASI data

The ASTER L1B and CASI data were selected for upscaling ground FVC measurements
to validate the GLASS FVC product. The spatial and temporal resolutions of ASTER
data were 15 meters and 15 days, respectively. The ASTER data included nine images
which were acquired on 30 May, 15 June, 24 June, 10 July, 2 August, 11 August, 18
August, 27 August and 3 September, 2012. CASI data with spectral range from 380 to
1050 nm and spatial resolution of 1 m were acquired on 29 June and 7 July, 2012.
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The CASI data covered an area of 30 km × 30 km in the middle reaches of the Heihe
River. The pre-processing of ASTER and CASI data included geometric correction,
radiometric calibration, and atmospheric correction using synchronous measure-
ments, and then the land surface reflectance data were generated.

The ASTER and CASI reflectance data were processed into FVC reference data
through an empirical transfer function which was based on the statistical relationship
between Normalized Difference Vegetation Index (NDVI) and field FVC measurements
(Mu et al. 2015). Linear and nonlinear regressions usually achieved good FVC estima-
tion result using NDVI. Therefore, the statistical model combined linear and nonlinear
conditions was used for FVC data generation using NDVI from ASTER and CASI data
(Mu et al. 2015):

FVC ¼ a� NDVI þ bð Þk (2)

where a, b and k are the model coefficients, which are determined based on the field
survey FVC data and the corresponding ASTER NDVI, and used to estimate FVC from
ASTER and CASI NDVI data. The FVC maps generated from each ASTER and CASI data at
their original spatial resolution would be used as the reference FVC data to validate the
GLASS FVC product. The GLASS FVC data were temporally interpolated using cubic
spline interpolation method to obtain the FVC values at the acquiring dates of the
ASTER and CASI data, and then FVC values from each pixel of the GLASS FVC product
were compared with the averaged FVC value from their spatial matched ASTER and CASI
FVC pixels.

3. Results and discussion

A randomly selected pixel to compare the temporal variation of GLASS FVC product and
FVC reference data was shown in Figure 2. It could be clearly seen that most of the FVC

Figure 2. Time series of GLASS FVC, interpolated GLASS FVC, aggregated ASTER and CASI FVC data
of a randomly selected pixel.
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values from GLASS FVC product were very close to the FVC reference values. There were
also some larger differences between GLASS FVC and ASTER FVC on 15 June (Day of
Year, DOY 167), 24 June (DOY 176), and 3 September (DOY 247). The GLASS FVC values
on these three days were higher than the ASTER FVC by about 0.1. The main reason
might be that GLASS FVC was re-projected and temporally interpolated to match with
the ASTER FVC data, which could brought larger uncertainties especially for the tem-
poral interpolation, because corn was in the rapid growth period on 15 June and 24
June, and in the decline period on 3 September, which caused rapid FVC variations in
these periods. In addition, the statistical model built from the field FVC measurements
and high spatial resolution NDVI data to transfer field measurements to high spatial
resolution FVC maps also exhibited residual errors, though the aggregating high spatial
resolution FVC might reduce these errors.

Furthermore, the GLASS FVC values showed a clearly smooth curve reflecting the
crop growing characteristics throughout the corn growing season and well captured the
seasonal FVC variations of corn. The FVC began to increase in late May and rapidly
reached to a peak value in early July along with the rapid growth of corn, then the FVC
kept a high value and decreased from late August to the middle of September. It could
be also found that there were small uncertainties for the ASTER and CASI FVC, for
example the CASI FVC on 29 June and 7 July were clearly presented slight deviation
from the smooth corn growing curve. Therefore, these results preliminarily indicated
that the GLASS FVC product could effectively capture the seasonal FVC variations of corn
and close to the ground FVC observations.

The scatter points of the GLASS FVC values and the corresponding FVC reference values
at the eleven time phases were presented in Figure 3. Qualitatively, it was found that most
of the scatter points were aggregated near or on the reference line (y = x) which indicated a

Figure 3. GLASS FVC from MODIS data versus the corresponding aggregated FVC from ASTER and
CASI FVC.
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satisfactory performance of the GLASS FVC product. Furthermore, most of the scatter
points with moderate FVC values were just above the reference line which indicated the
GLASS FVC were slightly higher than the reference FVC. These FVC points were mostly from
15 June, 24 June and 3 September, which were in the corn growth periods with rapid FVC
variations. These results were consistent with the findings in the analysis of the temporal
FVC variation aforementioned. The main reason might be the uncertainties from tempo-
rally interpolated GLASS FVC in the periods of rapid FVC variation and the residual errors of
the statistical model to transfer the field FVC measurements to high spatial resolution
FVC maps. Considering these uncertainties, the deviation of the GLASS FVC in the rapid FVC
variation periods of corn was acceptable. Quantitatively, the performance of the GLASS FVC
(R2 = 0.86, RMSE = 0.087, Bias = 0.0149) in the agriculture region was satisfactory. The
accuracy performance of the GLASS FVC product in the same region was also better than
that of the GEOV1 FVC product (R2 = 0.71, RMSE = 0.193) using the same reference FVC
maps, and the GEOV1 FVC presented even higher overestimation of FVC with moderate
values (Mu et al. 2015). These results further indicated the satisfactory performance and
reliability of the GLASS FVC product in the agriculture region.

4. Conclusion

The GLASS FVC product generated from MODIS data was validated in an agriculture region
based on time series field FVC measurements covering the whole crop growing season in
2012. The validation results showed that the time series GLASS FVC profiles were consistent
with the crop growing characteristics and the overall performance of GLASS FVC product
was satisfactory with R2 equal to 0.86 and RMSE equal to 0.087, which was better than the
performance of GEOV1 FVC product in the same region using the same reference FVC data.
Therefore, it could be concluded that the GLASS FVC product achieved acceptable perfor-
mance over agriculture region and would be a reliable FVC data source for agriculture
monitoring related applications. Further work should focus on extensive assessments of the
GLASS FVC product using more ground data over other vegetation types.
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