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Abstract
Surface downward longwave radiation (SDLR) is a key variable for calculating the earth’s surface radiation budget. In this study,
we evaluated seven widely used clear-sky parameterization methods using ground measurements collected from 71 globally
distributed fluxnet sites. The Bayesian model averaging (BMA) method was also introduced to obtain a multi-model ensemble
estimate. As a whole, the parameterizationmethod of Carmona et al. (2014) performs the best, with an average BIAS, RMSE, and
R2 of − 0.11 W/m2, 20.35 W/m2, and 0.92, respectively, followed by the parameterization methods of Idso (1981), Prata (Q J R
Meteorol Soc 122:1127-1151, 1996), Brunt and Sc (Q J R Meteorol Soc 58:389-420, 1932), and Brutsaert (Water Resour Res
11:742-744, 1975). The accuracy of the BMA is close to that of the parameterization method of Carmona et al. (2014) and
comparable to that of the parameterization method of Idso (1981). The advantage of the BMA is that it achieves balanced results
compared to the integrated single parameterization methods. To fully assess the performance of the parameterizationmethods, the
effects of climate type, land cover, and surface elevation were also investigated. The five parameterization methods and BMA all
failed over land with the tropical climate type, with high water vapor, and had poor results over forest, wetland, and ice. These
methods achieved better results over desert, bare land, cropland, and grass and had acceptable accuracies for sites at different
elevations, except for the parameterization method of Carmona et al. (2014) over high elevation sites. Thus, a method that can be
successfully applied everywhere does not exist.

1 Introduction

Surface downward longwave radiation (SDLR, 4–100 μm),
which is mainly emitted by H2O, CO2, and O3 molecules and
cloud water droplets in the atmosphere near the earth’s sur-
face, is one of the four components required to calculate the
earth’s surface radiation budget (Idso and Jackson 1969;
Duarte et al. 2006). Accurate estimates of SDLR are important
for calculating surface net radiation, which determines the
magnitude of the terms in the surface energy balance equation
(e.g., soil heat flux, sensible heat flux, and latent heat flux)

(Liang et al. 2010; Cheng and Liang 2016; Wang and Liang
2009a; Wang and Chen 2013).

The weighting function of SDLR peaks near the surface
(Gupta et al. 2010; Schmetz 1989), so near surface tempera-
ture and/or water vapor are used to calculate SDLR based on
the Stefan-Boltzmann equation.

SDLR ¼ ε Ta; eað ÞσT4
a ð1Þ

where σ is the Stefan–Boltzmann constant (5.67 × 10–
8 W m−2 K−4). ε is the atmospheric effective emissivity under
clear-sky conditions. ε can be modeled as a function of air tem-
perature (Ta), water vapor pressure (ea), or both. Different strate-
gies of representing ε under clear-sky condition form various
parameterization methods. Among these parameterization
methods, some are empirically based while others have a solid
physical basis. For example, Brunt (Brunt and Sc 1932)
established the empirical relationship between SDLR and ea
based on a perceived similarity between heat conduction and
radiative transfer. Three decades later, Swinbank (Swinbank
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1963) noted that SDLR is related to the square of Ta rather
than ea because precipitable water is more strongly corre-
lated with screen temperature than with screen vapor pres-
sure. Idso and Jackson (1969) theorized that the effective
emittance of the atmosphere is a minimum at 273 K, and it
increases symmetrically to exponentially approach unity at
higher and lower temperatures. They developed a new
formula that meets these standards and derived the
coefficient of the formula using experimental data from
Alaska, Arizona, Australia, and the Indian Ocean. In the
methods of Swinbank (1963) and Idso and Jackson
(1969), only air temperature is employed to estimate the
atmospheric emissivity. Based on an analytic solution of
Schwarzschild’s equation for a nearly standard atmosphere,
Brutsaert (1975) derived a more physical parameterization
method. Using a standard temperature lapse rate, Marks and
Dozier (1979) adjusted Ta and ea at elevation z to the sea
level equivalent and developed an elevation corrected mod-
el based on the method of Brutsaert (1975). Idso (1981)
claimed that air emissivity should be nonlinearly dependent
onTa and ea and derived a new formula using observations
from Phoenix (AZ, USA), where the air temperature ranges
from − 10 to 45 °C. Prata (1996) found that the method of
Brutsaert (Brutsaert 1975) cannot correct for low water va-
por amounts because the emissivity tends toward zero. He
presented a new method by assuming that the absorption in
the longwave spectrum can be represented by a simple ex-
ponential band model. Under cloudy conditions, the SDLR
is increased because the liquid water and ice absorb and
emit longwave radiation more effectively than water in
the vapor phase. The parameterization methods for estimat-
ing cloudy-sky SDLR correct for clouds based on clear-sky
SDLR. Therefore, accurate estimates for clear-sky SDLR
are important for calculat ing cloudy-sky SDLR.
Parameterization methods have been widely employed to
estimated SDLR at global and regional scales. For example,
Wang and Liang (Wang and Liang 2009b) estimated all-sky
SDLR using meteorological observations from 1996 to
2007 at 36 globally distributed sites; Bisht and Bras
(Bisht and Bras 2011) estimated the SDLR over the conti-
nental USA using the parameterization method of Prata
(1996) from MODIS products.

We must be careful when selecting parameterization
methods because most parameterization methods are site-spe-
cific, i.e., they were developed using a limited time span of
data from a certain local area. Thus, they are affected by geo-
graphic location and local atmospheric conditions and cannot
be applied elsewhere. Many studies have evaluated the per-
formance of different parameterization methods, but most of
them have been conducted for a certain region. Unfortunately,
the derived conclusions are inconsistent and sometimes con-
tradictory. Santos et al. 2011 tested the performance of nine
clear-sky SDLR methods in the semiarid region of Northeast

Brazil. Their study indicated that the parameterization method
of Sugita and Brutsaert (Sugita and Brutsaert 1993) performed
better than that of Brutsaert (Brutsaert 1975). However, the
study of Duarte et al. (Duarte et al. 2006) in Southern Brazil
found that the performance of the method of Brutsaert
(Brutsaert 1975) is better than that of the method of Sugita
and Brutsaert (Sugita and Brutsaert 1993). The parameteriza-
tion method developed by Swinbank (Swinbank 1963)
achieved the best results in the study of Kjaersgaard et al.
(Kjaersgaard et al. 2007) that evaluated 11 parameterization
methods using long time series measurements in Denmark,
whereas the method of Swinbank (Swinbank 1963) performed
the worst in the studies of Kruk et al. (Kruk et al. 2010) and
Carmona et al. (2014). Rizou and Nnadi (Rizou and Nnadi
2007) noted that heterogeneous land cover types can affect
atmospheric emissivity as well as air temperature and water
vapor. Moreover, the derived coefficients of the same param-
eterization method are quite different if data from different
areas are used. For example, nine different coefficients are
reported for the widely used clear-sky parameterization meth-
od developed by Brunt (Brunt and Sc 1932), with the variabil-
ity as large as 30% (Kjaersgaard et al. 2007).

The accuracy of the aforementioned parameterization
methods at global and regional scales is unclear, and
whether these methods can be applied to global or regional
scales also remains unknown. The purpose of this study is
to investigate the accuracy and applicability of widely used
parameterization methods at global and regional scales,
using ground observations collected from globally distrib-
uted flux measurement sites.

2 Data and method

2.1 Ground measurements

During the past two decades, several long-term ground observa-
tion networks deployed with pyrgeometers that measure SDLR
have been established.Ground-measured SDLR and correspond-
ing meteorological parameters (e.g., air temperature and relative
humidity) collected from 71 globally distributed sites in 6 net-
works were used to evaluate the accuracy of typical parameteri-
zationmethods. These sites include 29 sites fromBSRN, 12 sites
from AmeriFlux, 12 sites from Fluxnet, 8 sites from AsiaFlux, 6
sites from SurfRad, and 4 sites from CEOP. Figure 1 shows the
spatial distribution of the sites. Table 1 summarizes the site in-
formation, including latitude, longitude, elevation, land cover,
climate types, and the period of observation time. These sites
are globally distributed and represent different climate and eco-
system conditions, ranging from the Arctic to the Antarctic. The
land cover types of these sites include bare land, desert, cropland,
grassland, forest, wetlands, and ice. The elevations of the sites
range from 4 to 5038 m.
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The clear sky was identified using a cloud fraction that was
calculated using the following equation (Crawford and
Duchon 1999):

c ¼ 1−
SW↓

SW↓0
ð2Þ

where c is the cloud fraction, SW↓ is the ground mea-
sured surface incident shortwave radiation, and SW↓0 is
the theoretical shortwave clear-sky radiation calculated
using the method of Carmona et al. (2014). The clear
sky condition is identified when c is less than 0.05.
Note that nighttime data were excluded because SW↓

was not available. The input parameter ea (in hPa) was
calculated by

ea ¼ es
RH
100

� �
¼ 6:108exp

17:27Ta

Ta þ 237:3

� �� �
RH
100

� �
ð3Þ

where es (in hPa) is the saturation vapor pressure. Ta and
relative humidity (RH) are in degrees centigrade and per-
centage, respectively. The derived clear-sky data for each
site were randomly divided into two parts, two thirds for
calibrating the coefficient and one third for evaluating
the accuracy of the selected parameterization methods.

2.2 Methods

2.2.1 Clear-sky parameterization methods

Seven widely used parameterization methods were select-
ed in this study. The parameterization methods take the

form of Eq. (1) and are listed in Table 2. The first six
parameterization methods were briefly described in Sect.
1. Carmona et al. (2014) established two multiple linear
relationships between SDLR, Ta, and RH for all sky con-
ditions using experimental data from a sub-humid region,
Tandil, Argentina. The multiple linear relationships are
expressed as shown below:

SDLR ¼ aþ bTa þ dRHð Þ 1−cð Þ þ c½ �σT 4
a ð4Þ

SDLR ¼ eþ fTa þ gRH þ hc½ �σT4
a ð5Þ

where a, b, d, e, f, g, and h are locally calibrated constants, and
c is the cloud fraction. In clear sky conditions, c is equal to
zero. Substituting c = 0 into Eqs. (4) and (5), we obtained a
new formula,

SDLR ¼ a7 þ b7Ta þ d7RH½ �σT4
a ð6Þ

2.2.2 Bayesian model averaging method

Bayesian model averaging (BMA) is a standard method
for combining predictive distributions from different
sources (Hoeting et al. 1999). The BMA predictive prob-
ability density function (PDF) is a weighted average of
the forecast distributions from each model separately.
The weight is given by the posterior probability of each
model, which reflects the models’ predictive performance.
(Raftery et al. 2003).

BMA was used to obtain a more accurate estimate of
SDLR by combining the results obtained from the param-
eterization methods. For convenience, we employ r and R
to represent the predictive and corresponding in situ
SDLR, respectively, at a given time. {f1, f2, f3…, fn}is an
ensemble of n models that predict r. According to the total

Fig. 1 Spatial distribution of 71 observation sites in 6 measurement networks
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probability formula, the predictive PDF of r based on the
multi model ensemble is given by

p rj f 1; f 2…; f nð Þ ¼ ∑
n

i¼1
p rj f ið Þp f ijRð Þ ð7Þ

where p(r| fi) is the forecast PDF based on fi alone and p(fi|
R) is the posterior probability of fi being correct given the
measurement, which can reflect how well the model fi fits
the observed data. The posterior probabilities of all the

single models add up to one, so ∑
n

i¼1
p f ijRð Þ = 1. Thus, they

can be viewed as weights, wi. Equation (7) can be
rearranged as follows:

p rj f 1; f 2…; f nð Þ ¼ ∑
n

i¼1
wip rj f ið Þ ð8Þ

Assuming that the conditional PDF of r is normally distrib-
uted, it can be defined by the expected value, E, and variance,
σ2, with g(•) representing the associated Gaussian PDF.

p rj f ið Þ ¼ g rj Ei;σ
2
i

� �� 	 ð9Þ

p rj f 1; f 2…; f nð Þ ¼ ∑
n

i¼1
wig rj Ei;σ

2
i

� �� 	 ð10Þ

The optimal estimation of SDLR by BMA is the condition-
al expected value of r, and can be expressed as follows:

Exp rj f 1; f 2…; f nð Þ ¼ ∑
n

i¼1
wiEi ð11Þ

Thus, the key problem is obtaining the posterior prob-
abilities of each model wi, which renders the estimated
SDLR closest to the measurement R. On the basis of
Bayesian theory, we can get the best prediction when
the likelihood function Eq. (10) is maximized. The loga-
rithm of the likelihood function is used for convenience.
We use the expectation-maximization algorithm to maxi-
mize the likelihood function.

3 Results and discussion

3.1 Adjusted coefficients and validation

First, we evaluated seven parameterization methods with
their original coefficients. Then, the coefficients were cal-
ibrated by using two thirds of the samples from all sites.
The remaining one third of the samples were used to test

Table 2 Clear-sky parameterization methods evaluated in this study

Parameterization methods Formula

Brunt and Sc (1932) SDLR ¼ a1 þ b1e1=2a

� 	
σT4

a

Swinbank (1963) SDLR ¼ a2T2
a

� 	
σT4

a

Idso and Jackson (1969) SDLR ¼ 1−a3exp b3 273−Tað Þ½ð 2�Þ σT4
a

Brutsaert (1975) SDLR ¼ a4 ea
Ta


 �b4
� �

σT 4
a

Idso (1981) SDLR ¼ a5 þ b5eaexp 1500
Ta

h i
 �
σT4

a

Prata (1996) SDLR ¼ 1− 1þ 46:5 ea
Ta


 �
 �h

exp − a6 þ b646:5 ea

Ta


 �
 �ea
Ta

� �
�Þ σT4

a

Carmona et al. (2014) SDLR ¼ a7 þ b7Ta þ d7Rhð Þ σT4
a

Table 3 Comparison of original and adjusted coefficient values for seven clear-sky parameterization methods

Parameterization methods Coefficients Adjusted coefficients Original coefficients Relative difference (%)

Brunt and Sc (1932) a1 0.6338 0.52 21.88
b1 0.0426 0.065 − 34.46

Swinbank (1963) a2 9.0059 × 10− 6 9.365 × 10− 6 − 3.83
Idso and Jackson (1969) a3 0.2561 0.261 − 1.88

b3 − 2.9006 × 10− 4 − 7.77 × 10− 4 − 62.67
Brutsaert (1975) a4 1.0456 1.24 − 15.68

b4 0.0879 1/7 − 38.53
Idso (1981) a5 0.6836 0.7 − 2.34

b5 4.6869 × 10− 5 5.95 × 10− 5 − 21.23
Prata (1996) a6 1.3471 1.2 12.26

b6 2.7735 3 − 7.55
Carmona et al. (2014) a7 − 0.4373 − 0.34 28.62

b7 0.0037 0.00336 10.12
d7 0.0027 0.00194 39.18
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the performance of the parameterization methods. The
BIAS and RMSE were used as the primary indicators of
the accuracy. The BIAS is given by

BIAS ¼ 1

n
∑
n

i¼1
SDLRp;i−SDLRo;i
� 
 ð12Þ

where SDLRp, i and SDLRo, i are the predicted and ob-
served values, respectively. n is the number of samples.
The root mean square error (RMSE) is given by

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n−1
∑
n

i¼1
SDLRp;i−SDLRo;i
� 
2s

ð13Þ

In addition to BIAS and RMSE, the determination coeffi-
cient (R2) was also used as an indicator to test the performance
of the parameterization methods. The original and adjusted
coefficient values are shown in Table 3. Overall, the adjusted
coefficient values were significantly different from the origi-
nal values, and with the exception of the parameterization
methods of Swinbank (Swinbank 1963) and Prata (1996),
their relative differences were less than 15%. Thus, it is highly
important for real applications to adjust the coefficients using
more realistic data.

Figure 2 shows the accuracy of the parameterization
methods. Clearly, the accuracy of all the methods using the
adjusted coefficients is greatly improved. As shown in
Table 4, the BIAS of the adjusted coefficients ranges from −
4.53 to 0.01 W/m2, whereas the BIAS of the original coeffi-
cients lies between − 16.96 and 15.99 W/m2. The RMSE of
the adjusted coefficients ranges from 20.35 to 34.38 W/m2,
whereas the RMSE of the original coefficients lies between
22.23 and 36.65W/m2. R2 almost does not change. The SDLR
is underestimated by the methods using adjusted coefficients,
except for the parameterization method of Idso and Jackson
(1969). The RMSEs of the parameterization methods of
Swinband (1963) and Idso and Jackson (1969) are obviously
larger than those of the other methods, and the R2 values of
these two methods are clearly lower than those of the other
methods. Because ea is not considered in the parameterization
methods of Swinbank (1963) and Idso and Jackson (1969),
their accuracy is worse than the other parameterization
methods. This is in agreement with previous studies (Duarte
et al. 2006; Kjaersgaard et al. 2007; Kruk et al. 2010; Carmona
et al. 2014). Regarding the remaining five parameterization
methods, the parameterization method of Carmona et al
(2014) performs best, whose BIAS, RMSE, and R2 are −
0.11 W/m2, 20.35 W/m2, and 0.92, respectively, followed by
the parameterization methods of Idso (1981), Prata (1996),
Brunt and Sc (1932), and Brutsaert (1975).

We also combined five relatively accurate parameteri-
zation methods (Brunt and Sc (1932), Brutsaert (1975),
Idso (1981), Prata (1996), and Carmon (2014)) using

BMA to obtain multi-model ensemble estimates. The ac-
curacy of the BMA is close to that of the parameterization
method of Carmona et al. (2014) and comparable to that
of the parameterization method of Idso (1981). Checking

Fig. 2 The accuracy of seven parameterization methods as well as BMA

Table 4 Statistical results of seven parameterization models and BMA
using original and adjusted coefficients

Parameterizations Adjusted coefficients Original coefficients

BIAS RMSE R2 BIAS RMSE R2

Brunt and Sc (1932) − 1.27 22.41 0.91 − 16.96 29.05 0.91

Swinbank (1963) − 4.53 34.38 0.83 7.72 36.65 0.83

Idso and Jackson (1969) 0.01 29.62 0.81 15.99 36.31 0.83

Brutsaert (1975) − 1.36 23.35 0.9 5.77 26.5 0.91

Idso (1981) − 0.79 21.21 0.92 15.82 28.19 0.92

Prata (1996) − 1.13 21.96 0.91 2.05 22.41 0.92

Carmona et al. (2014) − 0.11 20.35 0.92 − 14.81 25.85 0.91

BMA − 0.89 21.13 0.92 − 3.60 22.23 0.92
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Fig. 3 Relative humidity sensitivity of seven parameterization methods and BMA
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Fig. 4 Air temperature sensitivity of seven parameterization methods and BMA
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the results from each site, we found that the BMA
achieves balanced results, that is, the accuracy is neither
the best nor the worst when compared to the results of the
five integrated parameterization methods.

Figures 3 and 4 show the scatterplot of residuals versus rela-
tive humidity and air temperature, respectively. Generally, the
variation of residues with respect to relative humidity and air
temperature is not significant, except for the parameterization
methods of Swinbank (1963) and Idso and Jackson (1969).
The residuals of these two parameterization methods decrease

with relative humidity and increase with air temperature. When
the air temperature is higher than 310 K, SDLR is overestimated
by the parameterization methods of Swinbank (1963) and Idso
and Jackson (1969).

To fully assess the parameterization methods, the sites
were divided into different types according to climate type,
land cover, and surface elevation. Due to their poor
performance, the parameterization methods of Swinbank
(1963) and Idso and Jackson (1969) were not considered
in the following analysis.

Table 5 Statistical results of five parameterization models and BMA over different climate types

Climate type BIAS RMSE

Brunt
Brutsaert

Idso Prata
Carmona

BMA
Brunt Brutsaert

Idso
Prata

Af − 7.43 − 13.96 − 0.80 − 6.48 − 7.10 − 6.08 14.01 18.24 11.68 13.46
Am − 30.32 − 31.32 − 29.41 − 29.89 − 29.27 − 30.02 32.18 33.57 31.48 31.70
Aw 5.06 1.74 4.07 4.81 − 2.59 2.33 19.49 18.93 19.01 19.03
BS 12.20 13.52 10.12 11.61 6.88 10.67 22.32 22.90 21.01 22.04
BW 5.38 6.13 1.99 4.59 − 0.07 3.51 15.80 15.49 15.14 15.79
Cf − 3.20 − 2.75 − 2.82 − 3.15 − 1.72 − 2.74 22.25 22.93 22.15 22.07
Cs − 3.47 − 1.05 − 5.69 − 4.36 − 4.81 − 3.79 13.78 13.36 14.27 13.92
Df 0.73 2.22 1.10 0.65 4.29 1.79 20.23 21.55 19.28 19.86
DW 6.65 − 3.59 10.52 11.32 − 6.35 3.13 19.72 19.33 22.52 22.92
ET − 11.22 − 10.98 − 7.49 − 10.06 1.35 − 6.99 25.27 24.66 23.91 25.21

Climate type RMSE R2

Carmona BMA Brunt Brutsaert Idso Prata Carmona BMA

Af 13.10 12.98 0.05 0.04 0.08 0.05 0.09 0.07
Am 32.77 32.04 0.82 0.75 0.79 0.83 0.49 0.79
Aw 16.96 18.00 0.56 0.41 0.66 0.59 0.65 0.60
BS 20.29 20.97 0.85 0.86 0.83 0.84 0.84 0.85
BW 14.85 14.74 0.87 0.88 0.84 0.86 0.87 0.87
Cf 23.04 21.98 0.87 0.86 0.87 0.88 0.85 0.87
Cs 14.64 13.35 0.92 0.92 0.92 0.92 0.90 0.92
Df 19.73 19.42 0.87 0.86 0.88 0.88 0.87 0.88
DW 20.73 18.58 0.84 0.88 0.78 0.78 0.87 0.86
ET 21.03 22.84 0.53 0.63 0.48 0.45 0.68 0.59

Fig. 5 Performance of five parameterization methods and BMA over different climate types
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3.2 Effects of climate type

Based on the Koppen climate classification, we divided the
sites into 10 groups using their geolocations: Af (tropical
rainforest climate), Am (tropical monsoon climate), Aw (trop-
ical wet and dry or savanna climate), BS (semiarid), BW (de-
sert climate), Cf (temperate or subtropical hot summer cli-
mates), Cs (mediterranean climates), Df (warm summer con-
tinental climates), Dw (dry winter continental climates), and
ET (tundra climate). We then evaluated the selected parame-
terization methods over different climate types.

Figure 5 shows the evaluation results over ten climate
types, and the statistical results are provided in Table 5.
SLDR is highly underestimated by all methods over Am, with

a BIAS around − 30 W/m2 and RMSE larger than 30 W/m2.
SDLR is also underestimated by all methods over Af. SLDR is
overestimated over the BS and BW climate types, with the
exception of the parameterization method of Carmona et al.
(2014) over BW. These results indicated that SLDR is prone to
be underestimated when water vapor is high and
overestimated when water vapor is low. Regarding the under-
estimation, there are two possible reasons: (1) the parameter-
ization methods do not work well under high water vapor
circumstances, and (2) the data derived from the tropical cli-
mate type in this study are not widely representative. There are
only two sites (MKL and Sa3) in Am and three sites (BKS,
MAN, and NAU) in Af. Flerchinger et al. (Flerchinger et al.
2009) noted that estimates of clear-sky SDLR were most

Table 6 Statistical results of five parameterization models and BMA over different land cover

Surface type BIAS RMSE

Brunt Brutsaert Idso Prata Carmona BMA Brunt Brutsaert Idso Prata

Desert 5.43 6.17 2.04 4.63 − 0.02 3.56 15.86 15.56 15.21 15.85
Bare land 4.97 − 4.65 9.49 9.61 − 5.73 0.88 23.52 20.12 26.62 27.18
Cropland 0.10 1.86 − 0.26 − 0.22 2.39 0.74 18.40 19.49 17.75 18.12
Grass 7.39 6.42 7.05 7.14 2.97 6.09 20.25 20.88 19.29 19.94
Forest − 14.56 − 14.24 − 13.26 − 14.19 − 12.94 − 13.81 26.77 27.14 25.64 26.52
Wetland − 26.32 − 25.92 − 21.52 − 25.75 − 13.72 − 21.73 41.04 40.43 38.35 40.78
Ice − 23.30 − 26.07 − 18.60 − 20.71 − 10.78 − 18.94 38.62 39.97 36.07 37.44

Surface type RMSE R2

Carmona BMA Brunt Brutsaert Idso Prata Carmona BMA

Desert 14.93 14.81 0.87 0.88 0.84 0.86 0.87 0.87

Bare land 19.74 20.63 0.53 0.63 0.48 0.45 0.68 0.70

Cropland 18.26 17.71 0.89 0.88 0.89 0.89 0.88 0.89

Grass 18.50 19.04 0.91 0.90 0.92 0.91 0.92 0.92

Forest 25.52 25.84 0.88 0.87 0.88 0.88 0.89 0.89

Wetland 32.94 37.70 0.75 0.74 0.76 0.75 0.77 0.76

Ice 31.18 35.61 0.53 0.54 0.53 0.53 0.57 0.55

Fig. 6 Performance of five parameterization methods and BMA over different land cover types
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accurate in sites with the most number of clear days. Also, the
sites with a low probability of clear conditions have low pre-
diction accuracy. Tropical climates (Af and Am) have year-
round high temperatures and are rainy, with a low probability
of clear conditions, meaning that they are more likely affected
by clouds. The influence of cloud contamination may contrib-
ute to the low estimation accuracy. As noted by Gupta et al.
(Gupta et al. 2010), the overestimation of SDLR over dry-
arid regions is a result of excessive heating of the surface
during times of high surface insolation. Without consider-
ing the results at Am, the differences between the remaining
climate types are not significant. Overall, the average BIAS
for the six parameterization methods ranges from − 4.00 to
− 1.84 W/m2, the RMSE is less than 21.07 W/m2, and the
average R2 is larger than 0.70. The parameterization meth-
od of Idso and Jackson (1969) has the lowest BIAS and
seems better than other methods. The average BIAS,
RMSE, and R2 values are − 1.84 W/m2, 20.05 W/m2, and
0.71, respectively.

3.3 Effects of land cover

To analyze the effects of land cover on the performances of the
selected parameterization methods, we divided the sites into
seven groups: desert, bare land, cropland, grass, forest, wet-
land, and ice. The performance of each parameterization
method over each type of land cover is shown in Fig. 6 and
Table 6. All methods achieve better results over desert, bare
land, cropland, and grass, but decline greatly over forest, wet-
land, and ice. The average BIAS of all methods over desert,
bare land, cropland, and grass range from − 0.10 to 5.29 W/
m2, whereas the BIAS over forest, wetland, and ice is quite
high and ranges from − 22.08 to − 12.48 W/m2; the corre-
sponding RMSE of the former four types of land cover is
significantly lower than the latter three; the R2 of the former
four types of land cover is slightly higher than the latter three.
The parameterization method of Carmona et al (2014) has the
lowest RMSE, highest R2, and second lowest BIAS, and the
corresponding average values are 23.01 W/m2, 0.80, and −

Table 7 Statistical results of five parameterization models and BMA over different elevations

Elevation BIAS RMSE

Brunt Brutsaert Idso Prata Carmona BMA Brunt Brutsaert Idso Prata

H < 500 − 5.77 − 6.27 − 4.32 − 5.43 − 2.56 − 4.73 22.41 23.11 21.23 21.95
500 < H < 1000 3.28 3.97 3.53 3.41 6.07 4.07 23.61 26.16 22.49 23.01
1000 <H < 3000 11.07 12.14 8.38 10.38 5.86 9.26 20.93 21.31 19.60 20.66
H > 3000 2.49 − 2.18 5.47 5.21 − 19.03 − 0.10 24.20 22.01 25.80 26.27

Elevation RMSE R2

Carmona BMA Brunt Brutsaert Idso Prata Carmona BMA

H< 500 19.92 21.02 0.93 0.93 0.94 0.93 0.94 0.94

500 < H < 1000 22.82 22.80 0.87 0.85 0.87 0.87 0.86 0.87

1000 <H < 3000 17.75 19.38 0.85 0.86 0.82 0.83 0.86 0.85

H > 3000 34.00 23.24 0.61 0.77 0.49 0.48 0.61 0.66

Fig. 7 Performance of five parameterization methods and BMA over different surface elevations
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5.40W/m2, respectively. The BMA has a balanced result over
each land cover type.

3.4 Effects of surface elevation

Similar to the analytical approach for the effects of climate
type and land cover type, we divided the site surface eleva-
tions (H, in m) into four ranges, H < 500, 500 < H < 1000,
1000 < H < 3000, and 3000 < H, to assess the effects of sur-
face elevation. The assessment results are shown in Fig. 7. The
differences among the parameterization methods are small
over the four elevation ranges with the exception of
Carmona et al. (2014) at high elevation sites, whose BIAS
and RMSE are the largest over high elevation sites. The
BIAS of each parameterization method over the low
elevation sites is better than that for the high elevation sites.
As shown in Table 7, among the different parameterization
methods, the parameterization method of Brutsaert (1975)
has the highest R2 and lowest BIAS, and the corresponding
average values are 0.85 and 1.92 W/m2, respectively. The
BMA has the lowest RMSE at 21.61 W/m2.

4 Conclusion

SDLR is a key variable for calculating the surface radiation
budget. The accuracy and applicability of seven widely used
parameterization methods for estimating clear-sky SDLR at
global and regional scales were investigated using groundmea-
surements collected from 71 globally distributed fluxnet sites.
The Bayesian averaging method was also applied to integrate
the estimates of a multi-model ensemble for more reliable
SDLR estimates. The following conclusions can be drawn:

1. The accuracies of the seven parameterization methods
using adjusted coefficients are greatly improved.

2. The accuracy of the parameterization methods of
Swinbank (1963) and Idso and Jackson (1969) is worse
than the other parameterization methods, because water
vapor is not considered. Therefore, they are not incorpo-
rated in BMA.

3. The parameterization of Carmona et al. (2014) performs
best, whose BIAS, RMSE, and R2 are − 0.11 W/m2,
20.35 W/m2, and 0.92, respectively, followed by the pa-
rameterization methods of Idso (1981), Prata (1996),
Brunt and Sc (1932), and Brutsaert (1975).

4. The accuracy of BMA is close to that of the parameteri-
zationmethod of Carmona et al. (2014) and comparable to
that of the parameterization method of Idso (1981).

5. On the whole, a method that can be successfully applied
everywhere does not exist; even the five selected parame-
terization methods and BMA can achieve high accuracy of
SDLR estimates. Fox example, the five parameterization

methods and BMA all failed over land with the tropical
climate type, with high water vapor, and had poor results
over forest, wetland, and ice. These methods achieved
better results over desert, bare land, cropland, and grass
and obtain acceptable accuracies for sites at different
elevations, with the exception of the parameterization
method of Carmona et al. (2014) over high elevation sites.

Regarding the cloudy skies, SDLR is substantially modi-
fied by the cloud. Both clear-sky SDLR and cloud information
(e.g., cloud cover) are required to estimate cloud-sky SDLR in
the widely used parameterization methods. Based on the con-
clusions drawn from this study, a cloud-sky SDLR method
that can be successfully applied everywhere may also not
exist. Thus, comprehensive assessment of mainstream cloud-
sky parameterization methods is urgently needed.
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