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Recently, five Global LAnd Surface Satellite (GLASS) products have been
released: leaf area index (LAI), shortwave broadband albedo, longwave broad-
band emissivity, incident short radiation, and photosynthetically active radiation
(PAR). The first three products cover the years 1982�2012 (LAI) and 1981�2010
(albedo and emissivity) at 1�5 km and 8-day resolutions, and the last two
radiation products span the period 2008�2010 at 5 km and 3-h resolutions. These
products have been evaluated and validated, and the preliminary results indicate
that they are of higher quality and accuracy than the existing products. In
particular, the first three products have much longer time series, and are therefore
highly suitable for various environmental studies. This paper outlines the
algorithms, product characteristics, preliminary validation results, potential
applications and some examples of initial analysis of these products.

Keywords: earth observation; global environmental change; remote sensing

1. Introduction

In order to advance global and regional land surface models at different scales and

improve their predictive capabilities and other applicability to other uses, various

space agencies have produced a series of high-level land surface biogeophysical

products from different satellite data. Considerable progress has been made and

different products have been used extensively for a variety of applications (Liang, Li,

and Wang 2012). The quality, accuracy, and spatial-temporal coverage of these

products, however, still require significant improvements.

There remain many issues in generating these products from satellite data, which

have a direct impact on their quality and accuracy. Firstly, data from multiple highly

complementary sensors have not been used effectively in generating the same high-

level land products. Most satellite products have been generated from individual
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sensors that usually cover the same short periods as the satellite missions. For

example, leaf area index (LAI) products are produced from the Moderate

Resolution Imaging Spectroradiometer (MODIS) and the Multi-angle Imaging

SpectroRadiometer (MISR) sensors separately, although they are in the same
satellite platform (Terra). Efforts are being made to produce the climate data

record (CDR) from multiple satellite data-sets, defined by the National Research

Council (NRC 2004) as a time series of measurements of sufficient length,

consistency, and continuity to determine climate variability and change. However,

most satellite land products still cover only short time series. Secondly, each

product is generated primarily from one instrument algorithm, but as a rule it is

almost impossible to identify the best algorithm as most of them perform optimally

only under certain conditions. Thus, the accuracy of the specific product is not
consistent under variable conditions. Finally, most instrument algorithms have not

retrieved surface variables using multi-temporal signatures and most satellite

inversion algorithms have not objectively incorporated a-priori knowledge. To

improve the quality and accuracy of satellite products, efforts are needed to fully

address these issues.

China has recently invested substantial resources to expand and improve on its

Earth observation capabilities. Although some experimental high-level products have

been generated, China has been unable to generate and distribute global land
products. To achieve those goals, China launched the 863 key project entitled

‘Generation and application of global products of essential land variables.’ The

central component of this project is the development of the Global LAnd Surface

Satellite (GLASS) product production system, which generates five land products:

LAI, shortwave broadband albedo, longwave broadband emissivity, downwelling

shortwave radiation, and photosynthetically active radiation (PAR).

Key strategies of this project include the development of an integrated system

that can produce multiple products from multiple satellite observations, exploring
the use of multiple algorithms for the same product to improve accuracy and

stability, and optimizing the use of temporal signatures in remote sensing data and

the existing satellite high-level products.

These five products have been recently released to the public. To facilitate their

extensive use, this paper aims to provide an overview of these products. In Section 2,

we will briefly introduce the GLASS product generation system, including the

execution of some preprocessing tasks. In Sections 3�7, individual products are

described in detail, including a brief introduction to the needs of such a product,
current satellite products and their limitations, GLASS product algorithms, and

preliminary validation results.

2. Production system, preprocessing, and overall characteristics of GLASS products

Figure 1 shows a schematic diagram of the hardware devices and inter-connectivities

within the GLASS products production system. The hardware primarily comprises a

data processing server and a production management server. The data processing
server is either a high-performance computer or a PC cluster. The production

management server comprises a task management server, a resource monitoring

server, a production-scheduling server, and a quality inspection server. The data

management system hardware mainly comprises a database management server, a
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mass data storage system, and a product distribution server, all of which are

interconnected via a 10 GB switch or 1 GB switch.

The hardware-specific parameters of the GLASS production system are listed in

Table 1, and comprise a computation server, a storage system, a database manage-

ment server, a distribution server, a switch, and other devices.

A series of preprocessing tasks have been executed to produce improved

algorithm inputs to allow the generation of the high-level products. The first group

of techniques is used mainly to process the MODIS surface reflectance product. To

detect and remove remaining cloudy or partially cloudy pixels in the MODIS surface

Database Management SystemGLASS Production System
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Figure 1. Hardware configuration for the GLASS product production system.

Table 1. Specifics of the hardware devices within the GLASS product production system.

Number Name Major equipment parameters

1 Computation server One hundred and forty four computation nodes with a

double quad-core CPU for each node; 1 GB/10 GB switch

2 Production

management server

Five classes of system management servers: task

management, resource monitoring, data arrangement,

production scheduling, and quality inspection

3 Storage system SAS storage: capacity 200 TB;15 krpmSAS hard disk;

IOPS no less than 650 thousand; and 2 RAID cards for

each IO node, totaling 24

SATA storage: capacity 500 TB; SATA 7200 rpm hard

drive; IOPS no less than 650 thousand; 2 RAID cards for

each IO node, totaling 24

Mobile disk: capacity 500 TB; SATA 7200 rpm hard drive,

mainly used for data download and back-up

4 Database

management server

Six classes database management servers: database

management, data catalog, data security, data service,

order inquiry, and data download
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Figure 2. Three examples of the improved MODIS surface reflectance images using the TSCD

algorithm (left) compared to the original MOD09A1 (right): (a) Amazon, (b) Java, Indonesia,

(c) Bohai area of eastern Asia. All images were acquired on 28 July 2001.
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reflectance product (MOD09A1), a new time series cloud detection (TSCD)

algorithm is implemented (Tang et al. 2012). TSCD is based on the assumption of

relatively stable surface reflectance and of rapid temporal variations in reflectance

due to cloud contamination. The validation results demonstrated that the TSCD

algorithm performs very well, particularly when the land surface is stable or

changing slowly. A temporal spatial filter method that integrates temporal, spatial,

spectral, and flag information has also been executed to better separate cloudy and

snow pixels and to fill any gaps. Some examples are shown in Figure 2.

These spatio-temporal filtering techniques have been extended to improve

Advanced Very High Resolution Radiometer (AVHRR) data; one example is shown

in Figure 3.

Five GLASS products have been generated and were released to the public in

November 2012. To facilitate and promote the utilization of these five products, the

user requirements for each product, the retrieval algorithms, and preliminary

Figure 3. Original AVHRR data from the NASA 0.058 long-term AVHRR data-set on 7

January 2000 (top) and the reprocessed data (bottom). Color composite using bands 1 (blue),

2 (green), and 1 (red).
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validation results will be presented in the following sections. Table 2 summarizes the

basic characteristics of these five GLASS products.

3. Shortwave broadband albedo product

3.1. Background

Land surface shortwave broadband albedo, representing the surface hemispheric
reflectivity integrated over the solar spectrum (0.3�3.0 mm), is a fundamental

component in determining surface radiation balance. Albedo has been identified by

the Global Terrestrial Observing System (GTOS) as one of the essential climate

variables (ECV).

The surface radiation budget is characterized by all-wave net radiation (Rn),

which is the sum of the shortwave (Sn) and longwave (Ln) net radiation:

Rn ¼ Sn þ Ln ¼ 1� að ÞS # þeL # �erT4
s (1)

where a is the surface shortwave albedo, S¡ the incident shortwave radiation

(Section 4), L¡ the downward longwave radiation, s the Stefan�Boltzmann constant,
o the surface thermal broadband emissivity (Section 6), and Ts the surface skin

temperature.

Land surface albedo is highly variable both spatially and temporally. Variations

in surface conditions, such as snow cover, vegetation phenology, and soil moisture,

are all accompanied by significant changes in land albedo. Drought or forest fires

can also lead to changes in surface albedo (Govaerts and Lattanzio 2008; Lyons, Jin,

and Randerson 2008). In addition, humans can greatly change surface albedo

through a variety of activities, such as deforestation (Loarie et al. 2011), irrigation
(Zhu et al. 2011), and urbanization (Offerle et al. 2005). The recession of snow cover

associated with warm periods in the Earth’s history has led to greater absorption of

solar energy (and hence amplified warming). Aerosols such as dust and soot may

also greatly contaminate snow and reduce its albedo (Hansen and Nazarenko 2004;

Xu et al. 2009).

Land surface albedo changes can be translated into equivalent carbon emissions

through a calculation of radiative forcing (Betts 2000). Betts (2000) compared the

radiative forcing associated with changes in surface albedo and atmospheric CO2 and
suggested that the positive forcing brought about by forestation-related decreases in

albedo in temperate and boreal forest regions could offset the negative forcing

expected from carbon sequestration. Deliberate land-use management (afforestation

or reforestation) has been proposed and implemented as a mechanism to remove

CO2 from the atmosphere and sequester carbon in trees and soils. Davin and

Table 2. Characteristics of the five GLASS products.

Product Spatial resolution Temporal resolution Temporal range

Shortwave albedo 1�5 km, 0.058 8-day 1981�2010

Incident solar radiation 5 km, 0.058 3-h 2008�2010

Incident PAR 5 km, 0.058 3-h 2008�2010

Longwave emissivity 1�5 km, 0.058 8-day 1981�2010

LAI 1�5 km, 0.058 8-day 1982�2012

10 S. Liang et al.



de Noblet-Ducoudré (2010) showed that surface albedo increases as a result of

deforestation (i.e. large-scale replacement of forests by grassland) has a cooling effect

equivalent to �1.36 K globally. This effect is greater at high latitudes and impacts

both land and ocean areas (Bala et al. 2007; Bonan 2008; Davin and de Noblet-

Ducoudré 2010). At high latitudes, terrestrial changes in summer albedo have

contributed substantially to recent warming trends. While the lengthening of the

snow-free season increases local atmospheric heating by around 3 W m�2, shrub and

tree expansion resulting from climate warming is expected to amplify the land

surface albedo feedback by two to seven times (Chapin et al. 2005).

Land surface albedo modulates the amount of solar radiation absorbed by

surfaces and directly controls the distribution of solar radiation between the surface

and the atmosphere, therefore significantly impacting climate and weather. Dethloff

et al. (2006) found that the altered Arctic sea-ice and snow albedo can trigger

changes in the Arctic and North Atlantic Oscillation pattern with serious

implications for European climate. Chapin et al. (2005) synthesized field data from

Arctic Alaska, showing that terrestrial changes in summer albedo contribute

substantially to recent high-latitude warming trends. Data from the Boreal

Ecosystem-Atmosphere Study (BOREAS) found that the winter albedos of the

forest sites were significantly different from those used in the European numerical

weather prediction models, leading to a systematic underestimation of the near-

surface air temperature (Sellers et al. 1997).

Liang et al. (2010) showed that land surface albedo calculated from current

general circulation models (GCM) are significantly different. Accurate satellite

albedo products are needed to calibrate and validate model simulations. Regional

surface albedo with an absolute accuracy of 0.02�0.05 for snow-free and snow-

covered land is required by climate, biogeochemical, hydrological, and weather

forecast models at a range of spatial (from a few hundred meters to 5�30 km) and

temporal (from daily to monthly) scales (Dickinson 1983). To monitor the effects of

the anticipated changes in land albedo on the global mean radiation budget, decade-

scale trends in continental-mean surface albedo should be measured to an accuracy

of 0.01 (Zhang et al. 2010).

Table 3 lists the existing global land albedo products. In addition to the need for

an improvement in accuracy, it is necessary for the temporal range to be longer. The

GLASS albedo product has the longest data record among the existing products.

Table 3. Summary of the current global shortwave broadband albedo products.

Albedo products Spatial resolution

Temporal

resolution (day) Temporal range

MODIS 0.5 km, 1 km, 0.058 8�16 2010�present

GlobAlbedo 0.058 16 1998�2011

POLDER 1/128 10 1996.11�1997.06,

2003.04�2003.10,

2005.07�2010.08

VEGETATION

(Geoland2)

0.58 10/30 1999�present

GLASS 1�5 km, 0.058 8 1981�2010
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3.2. GLASS albedo product

Most satellite albedo estimation algorithms consist of three steps (Liang et al. 2010):

atmospheric correction, surface directional reflectance modeling, and narrowband to

broadband conversion. However, the errors from each step may accumulate and

affect the final accuracy of the albedo product. An alternative approach, the so-

called ‘direct estimation algorithm’ estimates the surface albedo directly from

top-of-atmosphere (TOA) observations, combining all procedures into one step

through regression analysis and aiming only to give a best-estimate broadband

albedo. In an earlier study, Liang, Strahler, and Walthall (1999) developed such a

direct retrieval algorithm using a feed-forward neural network. It was later improved

using linear regression analysis in each angular bin and was applied to MODIS data

(Liang 2003), and also improved to produce very accurate daily snow/ice albedo

more efficiently with a mean bias of less than 0.02 and a residual standard error of

0.04 (Liang, Stroeve, and Box 2005). This algorithm has been adopted for

operationally mapping the land surface broadband albedo from the Visible/Infrared

Imager/Radiometer Suite (VIIRS) in the NPP program and the future Joint Polar

Satellite System (JPSS) program.

If a surface reflectance product (after atmospheric correction of the TOA

observations) is available, the last two steps can be combined to convert the directional

reflectance to broadband albedo. Cui, Mitomi, and Takamura (2009) developed such

an empirical formula based on POLDER/ADEOS-1 multi-angle imagery data.

The GLASS albedo product is produced from both AVHRR (1981�1999) and

MODIS (2000�2010) data. The albedo product from MODIS data is based on two

direct albedo estimation algorithms from surface reflectance (AB1), TOA radiance

(AB2, Qu et al. 2013), and the Statistics-based Temporal Filtering (STF) fusion

algorithm that integrates these two intermediate albedo products (Liu et al. 2012).

The AB1 algorithm establishes a linear regression equation between surface

directional reflectance and shortwave broadband albedo, specifically the shortwave

white-sky albedo and black-sky albedo corresponding to the solar angle at local

noon. It divides the solar illumination-view geometry space into small grids, which

are called ‘angular bins,’ and then derives regression coefficients for each angular bin.

Thus, the anisotropy of the land surface is empirically corrected. The AB2 algorithm

is similar to AB1 algorithm, but builds the linear regression equation between TOA

directional reflectance and shortwave broadband albedo. The STF algorithm is a

Bayesian theory based approach, which regards different intermediate products as

samples of the ‘true’ surface albedo with an inversion error and time discrepancy.

Therefore, the optimal estimation of the ‘true’ albedo aims to determine the location

with the maximum posterior probability. Thus, information from two different

intermediate products is merged, and noise is compressed. In the case of no valid

sample in the temporal filtering window, a-priori distribution of albedo is adopted to

fill the gap.

The albedo product from AVHRR data is based on a similar direct estimation

(AB2) algorithm from the TOA observations (Liu et al. 2013).
Extensive validation activities have been conducted and some results have been

reported by Liu et al. (2013). Directly comparing the results to ground measurements

at the homogeneous FLUXNET sites, the GLASS albedo product shows reasonable

consistency with the magnitude and trend of ground measurements, with a bias less

12 S. Liang et al.



than 0.001 and root mean square error (RMSE) less than 0.05 on clear days. The

cross comparison shows that GLASS albedo product has accuracy similar to that of

the MODIS MCD43B3 product whose data is marked by ‘good’ quality flag.

Another validation study (Hu et al. 2013) demonstrated that GLASS albedo

captured the spatial patterns better than MODIS albedo in northern China,

especially over cropland and grassland.

Since we were unable to find reliable ground measurements for validating land

albedo from AVHRR data, consistency tests were executed. The results indicate

that the retrieved long-term albedo record is very stable. Figure 4 shows examples of

long-term albedo values from both AVHRR and MODIS data at some stable sites.

Figure 4. GLASS albedo product at five sites: (a) Fort_Pack, 48.3079N, �105.101E,

glassland; (b) ARM_SGP_Main, 36.605N, �97.4884E, cropland; (c) Duke_forest_

hardwoods, 35.9736E, �79.1004N, mixed forest; (d) Naiman_site, 42.9333E, 120.700N,

desert; (e) NASA-SE, 66.4797E, �42.5002N, ice sheet.
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The average land surface albedo and its anomaly are shown in Figure 5. The

average albedo over land surface is about 0.2 not including the Antarctic region.

There are significant seasonal variations. Although there is no single identifiable

overall trend, we can clearly identify a decreasing trend after 2005 and an increasing

trend from the late 1980s and early 1990s. The detailed spatial and temporal

variations of global albedo from GLASS albedo product are displayed in Figure 6.

There are multiple factors resulting in the variations at different spatial and temporal

scales. He et al. (2013) found from the GLASS albedo product that a large decrease

in surface albedo over Greenland after 2000 (�0.0024 yr�1) mainly occurred at

Figure 5. Global average albedo and anomalies on land surfaces.

Figure 6. Spatial and temporal variations of global land surface albedo anomalies.
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elevations 1000�1500 m above sea level (�0.0059 yr�1) associated with surface

temperature increase. Shi and Liang (2013) found that the albedo increase over

Tibetan Plateau is highly correlated with the increase in snow cover. More studies are

necessary to evaluate the causes of the variations in albedo.

4. Incident PAR product

4.1. Background

Incident PAR in the visible spectrum (400�700 nm) is a key variable in ecological
modeling. Many ecosystem models calculate biomass accumulation as linearly

proportional to incident PAR. Information on the spatial and temporal distribution

of PAR, representing a control on the evapotranspiration (ET) process, is required

for modeling the hydrological cycle and for estimating global oceanic and terrestrial

net primary productivity (NPP).

Radiation, temperature, and water interact to impose complex and varying

limitations on vegetation activity in different parts of the world. Nemani et al. (2003)

estimated that radiation limits vegetation growth over 27% of Earth’s vegetated
surface. Almost all ecosystem models contain the physiological processes involved in

photosynthesis and stomatal regulation that control the exchange of water vapor and

carbon dioxide between vegetation canopies and the atmosphere. Gross primary

productivity (GPP) of the vegetation canopy is often calculated by production

efficiency models with inputs consisting of remote sensing products at varied spatial

scales:

GPP ¼ r� fPAR� PAR

where s is the radiation efficiency factor, fPAR represents the fraction of the PAR

absorbed by the green vegetation. fPAR has been produced as a satellite product

from many sensors, but thus far PAR has not. Cramer et al. (1999) inter-compared

models and found that many widely used models utilize the production efficiency

principles, such as Carnegie-Ames-Stanford approach (CASA) (Potter et al. 1993), a

simple biosphere model (SiB) (Sellers et al. 1986), and GLObal Production Efficiency

Model (GLO-PEM) (Prince and Goward 1995). The MODIS PSN/NPP product

algorithm (MOD17) is also based on this formulation (Zhao, Running, and Nemani

2006). All these models require inputs of PAR data.
Few land surface global PAR products exist, since most global radiative flux

data-sets do not include PAR, so users historically converted incident shortwave

radiation (insolation) to PAR using an empirical constant around 0.5. Several studies

from ground measurements have indicated that this ratio is not a constant, however.

Jacovides et al. (2003) found that this ratio varies from 0.460 to 0.501 for hourly

measured values. Alados, Foyo-Moreno, and Aslados-Arboledas (1996) also

documented seasonal and daily variations in the ratio. It is smaller and more

variable in the winter season than in the summer season, and is usually low at noon.
Recent studies have also confirmed the earlier findings (Wang et al. 2007; Xia et al.

2008).

The MODIS science team must currently disaggregate the coarse-resolution

(1.008�1.258) reanalysis solar radiation product from the Data Assimilation Office

(DAO) (now the Global Modeling and Assimilation Office) as forcing data to
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produce the 1-km PSN/NPP product (MOD17) (Zhao, Running, and Nemani 2006).

Since that data-set does not include PAR, the MOD17 algorithm simply calculates

PAR as 45% of insolation. Many other studies have also found significant impacts of

solar radiation on GPP/NPP calculations (Liu et al. 1997; Hicke 2005).
NASA has recently produced a high-resolution (9.3 km) 12-year (1997�2009)

global daily PAR product over oceans from SeaWiFS and MODIS data (Frouin

2007), but currently there is no corresponding high-resolution global PAR product

over land surfaces available. The GLASS PAR product fills this gap for a temporal

range of at least three years.

4.2. GLASS PAR product

There are two broad types of algorithm used for estimating incident solar radiation

from satellite observations (Liang et al. 2010). The first approach is to use retrieved

cloud and atmospheric parameters from other sources, with measured TOA

radiance/flux acting as a constraint. These parameters have been used for estimating

insolation from the Clouds and the Earth’s Radiant Energy System (CERES)

(Wielicki et al. 1998), the International Satellite Cloud Climatology Project (ISCCP)

(Zhang et al. 2004), Global Energy and Water Cycle Experiment (GEWEX) (Pinker

et al. 2003), and the Spinning Enhanced Visible and Infrared Imager (SEVIRI)
(Deneke, Feijt, and Roebeling 2008). This approach has a clear physical basis, but the

use of multiple atmospheric and surface products means that these products have

coarse spatial resolutions that are unable to meet the requirements of many land-

based applications.

The second approach is to establish the relationship between the TOA radiance

and surface incident insolation based on extensive radiative transfer simulations.

This idea was first applied to analyze the Earth Radiation Budget Experiment

(ERBE) data (Li and Leighton 1993; Li et al. 1993). Liang et al. (2006) and Liu et al.
(2008) generated the PAR and insolation products from MODIS data directly based

on the Look-up Table (LUT) method. A similar approach has been used for

Geostationary Operational Environmental Satellites (GOES) (Zheng, Liang, and

Wang 2008) and AVHRR (Liang et al. 2007b). The basic framework of the

algorithms is presented by Liang et al. (2006) in the case of estimating incident

PAR from MODIS data. The main approach of this algorithm is the use of multi-

temporal signatures from MODIS data. The outputs include direct and diffuse PAR,

insolation, and other intermediate variables. The algorithm was later extended to
estimate PAR from AVHRR and GOES data. In the follow-up studies, a series of

refinements and improvements have been made. For example, MODIS surface

reflectance product (MOD09) was used to map PAR over China from MODIS data

(Liu et al. 2008). This algorithm has been extended to estimate PAR from GOES

data (Zheng, Liang, and Wang 2008) by taking into account topographic effects. The

algorithm was also extended to estimate insolation over China from imagery of

Geostationary Meteorological Satellite (GMS) 5 by considering water vapor and the

surface elevation (Lu et al. 2010). Huang et al. (2011) further extended the LUT
scheme to estimate insolation by combining the Multifunctional Transport Satellite

(MTSAT) data and MODIS data products. As a result, the algorithm becomes

highly robust for multiple geostationary and polar-orbiting satellite data, and the

accuracy has steadily improved.
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The GLASS solar radiation products are based on four geostationary satellites

(two GOES, MSG, and MTSAT) and MODIS data. Each geostationary satellite

covers only one longitude zone in the low-latitude regions less than 608. The polar-

orbiting MODIS sensor collects daily data globally, but has gaps in low-latitude

regions. Combinations of these data provide frequently refreshed global coverage. A
detailed description of the algorithms for generating the GLASS solar radiation

products is given by Zhang et al. (2013). The basic algorithms are based on the

approach developed in previous studies with a series of refinements suitable for

operational production. The major advance is the combination of procedures for

integrating solar radiation products from multiple satellite data-sets. Figure 7

illustrates the monthly PAR calculated from the GLASS PAR product.

Zhang et al. (2013) validated the products using ground measurements at eight

sites (two SURFRAD sites, three AERONET sites, one CarbonEuropeIP site,
and two sites in China), the overall R2, bias, and RMSE is 0.85, 14.3 W m�2, and

47.5 W m�2, respectively. More validation studies are under way.

5. Incident shortwave solar radiation product

Incident short radiation at land surfaces is needed to address a variety of scientific

and application issues relating to climate trends, hydrologic, biophysical and

biochemical modeling, solar energy applications, and agriculture (Liang et al.
2010; Wild 2012). Altering surface radiative forcing will lead to significant

adjustments in surface temperature, moisture, and fluxes during the consequent

complex land surface thermodynamic and hydrological processes. Thus, it can be

expected to affect the surface heat and moisture budgets as well as biological

Figure 7. Global land surface monthly integrated incident PAR in 2008 at 5 km spatial

resolution calculated from GLASS PAR product in (a) January, (b) April, (c) July, and (d)

October.
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productivity. The observed reduction in land surface radiation during the past

30 years (1960�1990), the so-called ‘dimming effect,’ and the more recent evidence of

a reversal in ‘dimming’ in some locations since 1990 will likely have several

consequences on the climate and environment, notably on the hydrological cycle,

cryosphere, Earth energy budget, and carbon cycle (Mercado et al. 2009; Wild 2012).

However, the quality and spatial representativeness of the underlying surface

observational data have been and continue to be under debate. Satellite products

can address the spatial sampling issue, however, the temporal trends in the different

satellite products are less consistent (Wild 2012), and the inversion algorithms

require improvement.
Terrestrial ET uses on average approximately 59% (from 48% to 88% from

different models) of the surface net energy (Trenberth, Fasullo, and Kiehl 2009),

which is largely determined by surface incident solar radiation. In fact, many satellite

ET estimation algorithms, including the MODIS ET product (MOD16), are directly

dependent on incident solar radiation (Wang and Dickinson 2012). To initiate,

calibrate, diagnose, and validate these algorithms and models, accurate inputs of

solar radiation data-sets are a necessity. For example, the World Meteorological

Organization (WMO) has specific requirements of spatial resolution and uncertainty

for three applications (see Table 4).
The current global radiative flux data-sets derived mostly from satellite

observations have much coarser spatial resolutions, such as the CERES product

(Wielicki et al. 1998) at a spatial resolution of 140 km from 1997 to today, the ISCCP

product on a 280 km equal-area global grid from 1983 to 2008 (Zhang et al. 2004),

and the GEWEX surface radiation budget (SRB) product at a spatial resolution of

18�18 from 1983 to 2007 (Pinker et al. 2003) (see Table 5).
Current insolation products used mostly for climate studies do not have the

accuracy required for land-based applications. Gui et al. (2010) compared three

Table 4. WMO observation requirements for surface downward shortwave irradiance by

Space program. NWP: Numerical Weather Prediction, AOPC: Atmospheric Observation

Panel for Climate. (http://www.wmo-sat.info/db/variables/view/50, updated on 23 June 2011).

Uncertainty goal

(W m�2)

Uncertainty

threshold

(W m�2)

Horizontal

resolution

goal (km)

Horizontal

resolution

threshold (km)

Global NWP 1 20 10 100

Agricultural

meteorology

N/A N/A 1 20

Climate-AOPC 5 10 25 100

Table 5. Summary of the current global incident shortwave radiation satellite products.

Insolation products Spatial resolution Temporal resolution Temporal range

ISCCP 280 km 3-h 1983�2008

GEWEX-SRB 18 3-h 1983�2007

CERES 140 km 3-h 1997�present

GLASS 5 km 3-h 2008�2010

18 S. Liang et al.
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satellite-based surface insolation data-sets (GEWEX-SRB, ISCCP-FD, and CERES-

FSW) and demonstrated large biases in Southeast Asia, the Tibet Plateau, and

Greenland. Hicke (2005) found that global mean solar radiation from the National

Center for Environment Prediction (NCEP) exceeded that from ISCCP by 16%, and

locally, relative differences amounted to up to 40% in the mean and 10% in the trend

of solar radiation, and varied positively and negatively across the globe. Xia et al.

(2006) found that the NCEP reanalysis solar radiation data exceeded surface
observations by 40 to more than 100 W m�2.

The MODIS science team must currently disaggregate the coarse-resolution

(1.008 � 1.258) Data Assimilation Office (DAO) (now the Global Modeling and

Assimilation Office) reanalysis solar radiation product to provide the forcing data to

produce the 1-km ET product from MODIS data (MOD16) (Mu et al. 2007; Mu,

Zhao, and Running 2011). Berg et al. (2005) pointed out that a bias on many of the

reanalysis fields limits their use for hydrological modeling. Liu, Chen, and Cihlar

(2003) bilinearly interpolated NCEP reanalysis data of around 0.98 into 1km to

calculate daily ET at 1km resolution over the entire Canadian landmass in 1996 using

the boreal ecosystem productivity simulator (BEPS). They found the daily total

radiation in the NCEP data-set was 20�40% higher than the weather station

measurements and had to correct this overestimation with a reduction coefficient for

each month, determined by data from all 96 Canadian stations. In the NASA ET

ESDR White Paper, Wood and Kimball (2007) stated that the desired spatial

resolution of incident solar radiation product is 5 km.
The following user communities may have use for the insolation product (Liang

et al. 2007a): (1) Hydrologists/ecologists for characterizing surface fluxes, and

managing water and carbon resources; (2) Agronomists for monitoring crops,

estimating water requirements, and predicting yields at farm to continental scales; (3)

Federal agency officials involved in water resource allocation, crop yield assessment,

and drought monitoring; (4) Urban and regional planners for mitigating heat island

effects; and (5) Power plant administrators for estimating available solar energy.

For the insolation estimation from GMS-5 data (Lu et al. 2010), the RMSE and

bias of hourly estimates is 76.6 W m�2 and 8 W m�2, respectively. The daily

estimates have an average RMSE of 29.16 W m�2 (17.7%) under all-sky conditions,

which is relatively comparable to the results of other studies on using GMS-5

(Tanahashi et al. 2001; Kawai and Kawamura 2005). The RMSE of instantaneous

and hourly insolation estimates from MTSAT is 97.4 W m�2 and 89.0 W m�2,

respectively (Huang et al. 2011). For comparison, Gui et al. (2010) assessed

GEWEX, ISCCP-FD, and CERES-FSW data-sets with ground measurements
collected at 36 globally distributed sites from 2000 to 2002 and reported an

RMSE of 101.7�123.2 W m�2.

The GLASS insolation algorithm is almost identical to that discussed in Section

4.2 with a few differences, and the preliminary validation results are very

encouraging. Zhang et al. (2013) validated the instantaneous insolation product

using ground measurements at eight sites (two SURFRAD sites, three AERONET

sites, one CarbonEuropeIP site, and two sites in China), the overall R2, bias, and

RMSE is 0.87, 7.5 W m�2, and 103.6 W m�2, respectively. Huang et al. (2013)

validated the instantaneous GLASS insolation product using ground measurements

at 22 sites in the arid and semi-arid regions of China and found the R2 at every site

except one is larger than 0.8, and RMSE ranges from around 90 to 130 W m�2.
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Table 6. Comparison of retrieved 3 h GLASS insolation product, the International Satellite Cloud Climatology Project*Flux Data (ISCCP-FD),

CERES model B, and the CALISPO, CERES, Cloudsat and MODIS (CCCM) enhanced product in 2008.

CERES

Retrieved DSSR ISCCP-FD Model B CCCM enhanced

Site R2 Bias RMSE R2 Bias RMSE R2 Bias RMSE R2 Bias RMSE

Bondville 0.87 14.68 104.97 0.71 �7.06 149.88 0.84 12.9 119.5 0.82 �0.5 126.16

FortPeck 0.84 10.51 102.75 0.69 9.61 150.37 0.81 5.3 112.40 0.80 2.3 115.02

Goodwin Creek 0.91 �6.29 99.54 0.64 12.61 184.11 0.69 14.3 172.0 0.66 �3.8 179.35

Penn State 0.85 18.17 109.3 0.7 5.92 152.88 0.87 6.9 107.0 0.86 �8.6 111.18

Sioux Falls 0.81 11.52 114.41 0.65 37.83 168.85 0.62 �11.4 167.4 0.58 �37.8 178.77

Boulder 0.81 �12.8 126.38 0.72 6.49 154.96 0.34 �12.0 249.3 0.47 �43.0 214.41

DesertRock 0.92 �52.4 112.94 0.87 �42.4 125.27 0.52 �24.2 198.0 0.49 �26.6 206.38

2
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After aggregating the spatial resolutions of the GLASS insolation product to

match those of ISCCP and CERES, the validation results are shown in Table 6. It is

clear that GLASS product is more accurate than these two existing products for

these validation sites.

6. Longwave broadband emissivity product

Surface broadband emissivity o is a key variable for estimating surface longwave net

radiation, and an important parameter in climate, weather, and hydrological models.

For dense vegetation and water surfaces, o equals almost one. For non-vegetated

surfaces, o is much less than one. Unfortunately, due to the lack of reliable

observations, a constant emissivity value or very simple parameterizations are
adopted in land surface models and GCM. For example, the National Center for

Atmospheric Research (NCAR) Community Land Model Version 2 (CLM2)

calculates canopy emissivity from LAI and sets the soil and snow emissivities at

0.96 and 0.97, respectively (Bonan et al. 2002). A sensitivity study of the simulated

energy balance to changes in emissivity over northern Africa and the Arabian

Peninsula showed that, on average, a decrease of 0.1 in the soil emissivity increases

the ground and air temperatures by approximately 1.1 and 0.8 8C, respectively, and

decreases the net and upward longwave radiation by about 6.6 and 8.1 W m�2,
respectively (Zhou et al. 2003). Using offline CLM2 and coupled NCAR Community

Atmosphere Models, CAM2�CLM2, Jin and Liang (2006) illustrated that the largest

impacts on climate of surface emissivity occur over deserts, with changes up to 1�2 K

in surface skin temperature, and 2-m surface air temperature, as well as evident

changes in sensible and latent heat fluxes.

There is no broadband emissivity satellite product available, although several

spectral emissivity products exist, as shown in Table 7. In theory, all spectral

emissivity products can be converted into broadband emissivity using various
conversion formulae, but creating a long-term broadband emissivity product from

multiple satellite data is not an easy task since it requires a series of processing steps.

The GLASS emissivity product is the only thermal-IR broadband emissivity ready

for general use by the community. Note that it is a window broadband emissivity

(8�13.5 mm) because it is found from extensive simulations from which it can calculate

the longwave (2.5�200 mm) net radiation most accurately (Cheng et al. 2012).

The GLASS longwave emissivity product is generated from both AVHRR visible

and near-infrared reflectance from 1981 to 1999 and MODIS seven black-sky
albedos ranging from 2000 to 2010. GLASS emissivity algorithms (Cheng and Liang

2013b; Ren et al. 2013) classify the land surface into five types: water, snow/ice, bare

soils, vegetated areas, and transition zones. The first two surface types are derived

from the preprocessing steps and their emissivity values are set at 0.985 based on the

ASTER spectral library (http://spclib.jpl.nasa.gov) and the MODIS UCSB spectral

library (http://www.icess.ucsb.edu/modis/EMIS/html/em.html). The last three types

are determined by the Normalized Difference Vegetation Index (NDVI) threshold

values. GLASS broadband emissivity values are linearly related to shortwave spectral
albedos and NDVI.

The method for estimating emissivity from AVHRR visible and near-infrared

reflectance data (Cheng and Liang 2013a) is similar to that used for MODIS optical

data. The major differences are that (1) the threshold values for identifying different
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land surface types differ, and (2) the input of the algorithm used for AVHRR is the

reflectance of Channels 1 and 2, whereas the input data for the algorithm designed

for MODIS is seven narrowband black-sky albedos.

The broadband emissivity derived from the MODIS albedos was validated by the

field measurements conducted over desert areas in the USA and China; the absolute

difference was found to be 0.02 (Cheng and Liang 2013b). The broadband emissivity

derived from the AVHRR was consistent with that derived from MODIS data. The

mean bias and RMSE of the difference between these two products was on the order

of 0.001 and 0.01, respectively (Cheng and Liang 2013a).

In an independent validation study over desert areas (Dong et al. Forthcoming),

the GLASS emissivity product is found to be in a very good agreement with field

measurements. The range of the mean and standard deviation for all sand sample

sites collected in the western region of Inner Mongolia Province is 0.0059 and 0.0114,

respectively, and the difference between GLASS inversion emissivity and measured

data is within 90.02. In the center of the Taklimakan desert, the average difference is

less than 0.015. At the surface of the Dunhuang Gobi region, the average difference

is 0.001 and 0.021 with different measurements, respectively. The combined mean

emissivity difference between the GLASS product and the field measured results at

all validation sites was about 1.1%.

Figure 8 displays the temporal variations of thermal broadband emissivity for a

few major land cover types averaged from the global products. There are some

minor disagreements in emissivity values from AVHRR and MODIS data, but in

general the long-term values are stable and consistent. In comparison, the UW-

Madison CIMSS emissivity values have much larger variations for most land cover

types.

Table 7. Summary of the current global spectral emissivity products. IASI: Infrared

Atmospheric Sounder Interferometer.

Products

Spatial and temporal

resolutions, and temporal range Wavelengths

CERES emissivity map

(Wilber, Kratz, and Gupta

1999)

Global coverage, 10?�10?,
no temporal variation

12 spectral bands and one

broadband (5�100 mm)

MODIS-based baseline fit

database (Seemann et al.

2008)

Global coverage, 0.058,
monthly, 2003�2011

10 wavelengths

(3.6�14.3 mm)

AIRS (Pequignot, Chedin,

and Scott 2008)

308N�308S, monthly, April

2003�March 2006

3.7�14 mm (0.05 mm

spectral resolution)

IASI (Capelle et al. 2012) 308N�308S, monthly, April

2007�March 2011

3.7�14 mm (0.05 mm

spectral resolution)

ASTER (Gillespie et al. 1998) Global discontinuous coverage,

90 m, 2000�present

5 bands

MODIS emissivity product

(MOD11) (Wan and Li

1997)

Global coverage, 0.058,
2000�present

6 bands (3.8�12.0 mm)

GLASS emissivity Global coverage, 5 km (1981�
1999) and 1 km (2000�2010)

1 broadband (8�13.5 mm)
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7. Leaf area index

7.1. Background

LAI, defined as one half of the total green leaf area per unit of horizontal ground

surface area, is often called the true LAI. The true LAI multiplied by the clumping

Figure 8. Long-term global surface thermal broadband emissivity mean values for five land

cover types from the GLASS emissivity product. The UW-Madison CIMSS emissivity product

(narrowband emissivity values are converted into the broadband emissivity using the

published formula, Cheng et al. 2012) is also presented for comparison. Land cover maps

are from the MODIS product: Majority_Land_Cover_Type_1 (MCD12C1 V5) and the land

cover map from 2000 is used for the mean value calculation before 2000.
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index is termed the effective LAI. LAI measures the amount of leaf material in an

ecosystem, which imposes important controls on processes, such as photosynthesis,

respiration, and rain interception, which link vegetation to climate. Hence, LAI

appears as a key variable in many models describing vegetation�atmosphere
interactions, particularly with respect to the carbon and water cycles.

The models typically use satellite data based estimates of LAI in one of three

ways: forcing for the model, validation of model output, and model assimilation.

Buermann et al. (2001) reported using the NCAR Community Climate Model

(CCM3) forced with AVHRR derived LAI that the use of satellite-derived fields

leads to a notable warming and decreased precipitation over large parts of the

northern hemisphere land area during the boreal summer. Such warming and drying

result in reduced discrepancies between the simulated and observed near-surface
temperature and precipitation fields.

The user community of the LAI includes at least the following three categories

(Myneni et al. 2007): (1) Scientific: modelers of climate, primary production, ecology,

hydrology, or crop production; (2) Public: meteorological organizations, deforesta-

tion, and desertification monitoring organizations, rapid response systems, pest risk

evaluation companies, governments (for the implementation of international treaties

such as the Kyoto protocol); and (3) Private: international agriculture and forestry

companies, insurance companies, traders, amongst others. The WMO requirements
for a LAI product are shown in Table 8.

Based on feedback from the user community in addition to the accumulated

research experience, Myneni et al. (2007) proposed the following specifications for a

global LAI product in the NASA ESDR White Paper (see Table 9):

� LAI accuracy of 0.5 LAI units to be achieved for corresponding global

averages over individual biomes.

� Spatial resolution dependent on application: from 250 m (local ecological
studies) to 0.258 (global climate studies).

� Temporal frequency from four days to monthly.

� Length of record starting from the beginning of AVHRR measurements (July

1981) and continuing into the future.

7.2. GLASS LAI algorithm and product validation

There are two methods for retrieving LAI from satellite data (Liang 2007): empirical

methods and physical methods. The empirical methods are based on statistical

relationships between LAI and spectral vegetation indexes, which are calibrated for

distinct vegetation types using field measurements of LAI and reflectance data

recorded by remote sensors or simulations from canopy radiation models. The

physical methods are based on the inversion of canopy radiative transfer models

through iterative minimization of a cost function, a LUT method, or various

machine learning methods. Inversion techniques based on iterative minimization of a
cost function require hundreds of runs of the canopy radiative transfer model for

each pixel; they are therefore computationally too demanding. For operational

applications, LUT and artificial neural networks (ANN) methods are two popular

inversion techniques that are based on a pre-computed reflectance database. For
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Table 8. WMO observation requirements for LAI by Space program. (http://www.wmo-sat.info/db/variables/view/98, updated on 3 June 2012).

Application area

Uncertainty goal

(%)

Uncertainty

threshold (%)

Spatial resolution

goal (km)

Spatial resolution

threshold (km)

Temporal

resolution goal

Temporal resolution

threshold (day)

Global NWP 5 20 2 50 24-h 10

High-resolution

NWP

5 20 1 40 12-h 2

Hydrology 5 20 0.01 10 7-day 24

Agricultural

meteorology

5 10 0.01 10 5-day 7

Climate-TOPC 5 10 0.25 10 24-h 30
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example, MODIS and MISR LAI products are based on the LUT method, and

CYCLOPES LAI product is based on the ANN method.

The GLASS LAI algorithm (Xiao et al. 2013a, 2013b) is based on time-series

reflectance data using general regression neural networks (GRNNs) trained by the

fused LAI from MODIS and CYCLOPES LAI products and the reprocessed

MODIS reflectance of the BELMANIP sites during the period 2001�2003. Two key

unique features should be emphasized here. The first is to estimate the LAI annual

profile by means of annual observations. Differing from the existing neural network

methods that use only remote sensing data acquired at a specific time to retrieve LAI,

GRNNs used for the GLASS LAI product use the surface reflectance of an entire

year as the input. The output is therefore a one-year LAI for each pixel. The second

feature is to train the ANNs by integrating both MODIS and CYCLOPE LAI

products. Training with the representative samples is critical in any ANN algorithms.

Instead of using simulation data, ANNs are trained with the fused time-series LAI

from MODIS and CYCLOPES LAI products and the reprocessed MODIS

reflectance.

The GLASS LAI product has been evaluated with both direct validation and

inter-comparative studies (Xiao et al. 2013a, 2013b). By computing the RMSE and

R2 of each product over the LAI reference maps, it can be shown that the accuracy of

Table 9. Summary of the current global LAI products; current products do not meet the user

requirements.LAI products

LAI type

Spatial

resolution

Temporal resolution

(day) Temporal range

MODIS True 1 km 8 2010�present

CYCLOPES Effective 1/1128 10 1999�2003

GLOBECARBON True 1/11.28 10 1998�2007

Geoland2 True 1 km, 0.058 10 1981�2012

GLASS True 1�5 km, 0.058 8 1981�2012

Figure 9. Global average LAI for the period 1981�2012.
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the GLASS LAI is clearly better than that of MODIS and CYCLOPES. Moreover,

the GLASS LAI is more temporally continuous and spatially complete than the

other tested products. The spatial patterns generated by GLASS are reasonable and

consistent with good-quality MODIS and CYCLOPES LAI values. GLASS and

CYCLOPES have smoother trajectories compared to the erratic fluctuations of the

MODIS LAI. The GLASS LAI has more realistic and reasonable trajectories

representing seasonal variations, especially for forested areas.
Extensive validation and comparison results have been shown in the previous

works (Xiao et al. 2013a, 2013b). Fang et al. (2013) recently compared six major

satellite LAI products, and the GLASS LAI product is reasonably consistent with

other products.

The global annual average LAI distribution and anomalies are shown in Figures

9 and 10. Increased LAI can be found many parts of the world. It is interesting to

note an overall increasing trend (Figure 11).

Figure 10. Slope of the linear fitting of global LAI changes from 1981 to 2012.

Figure 11. Temporal variations of global average LAI from 1981 to 2012 (y-axis has been

multiplied by 10).
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8. Brief summary

The high-resolution long-term GLASS data-set includes five products: albedo,

emissivity, LAI, insolation, and PAR. The first three products span the period

1981�2012 (LAI) and 1981�2010 (albedo and emissivity) at 1�5 km and 8-day

resolutions, and the last two products cover the period from 2008 to 2010, but have a

high temporal resolution (3 h) and spatial resolution (5 km). The first three products

are mainly based on AVHRR and MODIS data products, and the latter two

radiation products use the five combined geostationary satellites and MODIS data.

When discussing each product, we began with a discussion of the potential

applications and the limitations of the existing satellite products, resulting in the need

for such an improved product. After reviewing the current inversion algorithms, we

briefly outlined the GLASS product algorithms with an emphasis on their unique

features, since most algorithms have been or will be published in peer-reviewed

journals. Initial quality evaluation and validation analyses have been conducted.

Their accuracy and inter-comparisons with the representative existing products have

also been reported.

The evaluation and validation results have so far demonstrated that the GLASS

products cover much longer temporal ranges, have high spatial and temporal

resolutions, and achieve much higher accuracy compared to the existing products.

Efforts are currently under way to generate further products from the GLASS

product production system with increasing reliance on the use of Chinese satellite

data.
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