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A B S T R A C T   

Leaf area index (LAI) is a terrestrial essential climate variable that is required in a variety of ecosystem and 
climate models. The Global LAnd Surface Satellite (GLASS) LAI product has been widely used, but its current 
version (V5) from Moderate Resolution Imaging Spectroradiometer (MODIS) data has several limitations, such as 
frequent temporal fluctuation, large data gaps, high dependence on the quality of surface reflectance, and low 
computational efficiency. To address these issues, this paper presents a deep learning model to generate a new 
version of the LAI product (V6) at 250-m resolution from MODIS data from 2000 onward. Unlike most existing 
algorithms that estimate one LAI value at one time for each pixel, this model estimates LAI for 2 years simul-
taneously. Three widely used LAI products (MODIS C6, GLASS V5, and PROBA-V V1) are used to generate global 
representative time-series LAI training samples using K-means clustering analysis and least difference criteria. 
We explore four machine learning models, the general regression neural network (GRNN), long short-term 
memory (LSTM), gated recurrent unit (GRU), and Bidirectional LSTM (Bi-LSTM), and identify Bi-LSTM as the 
best model for product generation. This new product is directly validated using 79 high-resolution LAI reference 
maps from three in situ observation networks. The results show that GLASS V6 LAI achieves higher accuracy, 
with a root mean square (RMSE) of 0.92 at 250 m and 0.86 at 500 m, while the RMSE is 0.98 for PROBA-V at 300 
m, 1.08 for GLASS V5, and 0.95 for MODIS C6 both at 500 m. Spatial and temporal consistency analyses also 
demonstrate that the GLASS V6 LAI product is more spatiotemporally continuous and has higher quality in terms 
of presenting more realistic temporal LAI dynamics when the surface reflectance is absent for a long period owing 
to persistent cloud/aerosol contaminations. The results indicate that the new Bi-LSTM deep learning model runs 
significantly faster than the GLASS V5 algorithm, avoids the reconstruction of surface reflectance data, and is 
resistant to the noises (cloud and snow contamination) or missing values contained in surface reflectance than 
other methods, as the Bi-LSTM can effectively extract information across the entire time series of surface 
reflectance rather than a single time point. To our knowledge, this is the first global time-series LAI product at the 
250-m spatial resolution that is freely available to the public (www.geodata.cn and www.glass.umd.edu).   

1. Introduction 

Leaf area index (LAI) is one of the terrestrial essential climate vari-
ables designated by the Global Climate Observing System (GCOS) and is 
widely used in a variety of scientific applications, including terrestrial 
ecosystem model simulation, crop yield estimation, and vegetation 
change monitoring. There are two typical definitions of LAI: the true 
LAI, which is described as half of the total green leaf area per unit of the 
horizontal land surface (Chen and Black, 1992; Yan et al., 2019), and the 
effective LAI, which assumes the random distribution of leaves and 

represents the product of the true LAI and the clumping index (i.e., the 
degree of foliage distribution relative to a random one) (He et al., 2012). 

Satellite observation data have provided the only reliable means for 
global time-series mapping of LAI. Current global LAI products are 
estimated from various satellite data (Fang et al., 2019a; Liang and 
Wang, 2019), such as the Advanced Very High-Resolution Radiometer 
(AVHRR), Moderate Resolution Imaging Spectroradiometer (MODIS), 
and SPOT/VEGETATION. The retrieval algorithms of these LAI products 
are mainly based on physical or statistical methods. Physical methods 
are based on LAI inversion from radiative transfer models in different 
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fashions. For example, MODIS LAI is generated using look-up-tables 
(LUTs) created from a three-dimensional (3D) radiative transfer model 
(Myneni et al., 2002), CYCLOPES LAI is produced using artificial neural 
networks (ANNs) trained from the PROSAIL model (Baret et al., 2007), 
and the GLOBCARBON LAI is based on a four-scale model (Feng et al., 
2006). Statistical methods are based on statistical relationships between 
LAI and surface reflectance, or vegetation indexes. For example, GEOV 
LAI is developed from the CYCLOPES and MODIS LAI using the heuristic 
arguments fusion method and ANN model (Baret et al., 2013); The 
Global LAnd Surface Satellite (GLASS) LAI is trained from the fused 
time-series LAI from the CYCLOPES and MODIS LAI products and the 
reprocessed MODIS red and near-infrared surface reflectance (Liang 
et al., 2021; Xiao et al., 2014); GLOBMAP LAI is derived from the 
empirical relationship between AVHRR normalized difference vegeta-
tion index (NDVI) and MODIS LAI (Liu et al., 2012); a recent study by 
Kang et al. (2021) mapped 30-m LAI for the contiguous US by building a 
relationship between Landsat reflectance and MODIS LAI product using 
the random forest model. 

However, there are several issues in generating global LAI products. 
First, both estimation methods are sensitive to “noises” of the input 
surface reflectance, which is often contaminated by clouds or high- 
concentration aerosols, resulting in fluctuations or gaps in LAI time- 
series products. According to Yan et al. (2016b), the annual missing 
data rate of MODIS LAI can reach 40% in cloud- and snow-dominated 
areas and data gaps often occur in winter. It has been recognized that 
the temporal information contained in satellite observations must be 
fully utilized to generate spatiotemporal continuous data products. 
GLASS LAI was produced in this context by exploiting multi-temporal 
satellite data using a general regression neural network (GRNN). 
Although the GLASS LAI algorithm reconstructs the continuous surface 
reflectance using a vegetation indices based smoothing method (Xiao 
et al., 2015), the current version (V5) product still has many abnormal 
values and unrealistic seasonality in winter in middle- and high-latitude 
areas (Section 5). Besides, the surface reflectance reconstruction process 
for GLASS LAI is extremely time-consuming because of the optimization 
process for searching for the minimum of the cost function. 

Second, current global LAI products have significant discrepancies 
owing to different input observation data and/or retrieval algorithms 
used. For example, the mean LAI difference between different products 
can be one unit in tropical forest areas (Yan et al., 2016b), which may 
cause substantial uncertainties in vegetation change analysis and land 
surface model simulations (Alkama et al., 2022; Jiang et al., 2017; Piao 
et al., 2015). This calls for the exploration of various estimation methods 
to produce more accurate global LAI products. 

Third, the Global Observing System for Climate (GCOS) requires LAI 
product to have a spatial resolution of 250 m for carbon modeling 
(GCOS, 2016); however, current LAI products cannot meet such a 
requirement, except those that are either regional or as short as one year, 
such as the University of Toronto LAI product from MODIS data (Gon-
samo and Chen, 2014). The PROBA-V global LAI product at 300-m 
resolution and 10-day frequency is close to the GCOS requirement; 
however, the temporal span is only from 2014 to 2020. MODIS provides 
the only long time-series data source with a spatial resolution of 250 m 
beginning from 2000, there is an urgent need to produce a long time- 
series global LAI product with higher accuracy and finer spatial reso-
lutions from MODIS data. 

Most estimation algorithms use multiple bands of satellite data, but 
few also exploit temporal signatures, which can potentially help resolve 
some of the issues identified above. Taking full advantage of signatures 
in both the spectral and temporal dimensions in satellite observations 
requires a more robust time-series modeling method that can learn much 
more from data than traditional machine learning models, which have a 
shallow architecture. With the increasing satellite data availability and 
computing power in recent years (Ball et al., 2017), deep learning has 
succeeded and outperformed traditional machine learning models in 
various remote sensing estimation applications, such as estimating soil 

moisture (Fang et al., 2019b), precipitation (Wu et al., 2020), land 
surface and air temperature (Shen et al., 2020; Svendsen et al., 2020), 
and crop yield (Jiang et al., 2020). Among the numerous deep learning 
architectures, the recurrent neural network (RNN) can address the 
temporal dependencies in time-series data (Sherstinsky, 2020) and deal 
with time-series regression or forecasting of satellite data (Yuan et al., 
2020). The variants of RNN include the long short-term memory (LSTM) 
network (Hochreiter and Schmidhuber, 1997), the gated recurrent unit 
(GRU) (Cho et al., 2014), and the bi-directional LSTM (Bi-LSTM) (Huang 
et al., 2015), which were developed to address the limitation of RNN in 
learning long-term temporal dependencies. 

This study aims to explore the deep learning approach for generating 
a new version (V6) of GLASS LAI product at the 250-m resolution from 
MODIS surface reflectance data. GLASS LAI product has been widely 
used (Liang et al., 2021), but the current version (V5) has several limi-
tations, such as temporal fluctuation, data gaps, high dependence on the 
quality of surface reflectance, and low production efficiency. This new 
V6 GLASS LAI is designed to effectively address these issues and also 
increase the spatial resolution from 500 m to 250 m. 

The structure of the remainder of this article is as follows. Section 2 
describes the methodology for generating the V6 LAI product, Section 3 
introduces the data employed, Section 4 presents the results analysis, 
and the discussion and conclusion are given in Sections 5 and 6, 
respectively. 

2. Methods 

The GLASS V6 LAI algorithm is based on the deep learning approach. 
There are several key issues addressed by the algorithm, among which 
are the creation of time-series training data and the selection of a deep 
learning model. As there is no in situ measured time-series LAI dataset 
that is large enough to be used as “true values” for model development, 
our strategy for determining the “true values” is to identify the pixels 
with the closest values in the three “best” global LAI products, namely, 
MODIS Collection 6, GLASS V5, and PROBA-V V1 LAI, which have the 
same LAI definition (true LAI). The assumption is that if three products 
have very close values for a specific pixel, the average/median of these 
three values may better represent the actual LAI value of that pixel. The 
LAI values of the identified pixels and the corresponding band combi-
nations of MODIS 8-day surface reflectance (MOD09A1) at 500 m 
constitute the global samples for model training and validation. To build 
the relationship between time-series LAI and reflectance, four machine 
learning models, GRNN, LSTM, GRU, and Bi-LSTM, are evaluated to 
identify the best model for product generation. 

The schematic overview of this algorithm is illustrated in Fig. 1 and 
contains five key steps:1) creation of training samples that are globally 
distributed and representative of major land-cover types; 2) determi-
nation of the best deep learning model by exploring four models; 3) 
generation of the primary LAI products at 500-m and 250-m resolutions 
by implementing the trained models to six-band 500-m and two-band 
250-m surface reflectance, respectively; 4) consolidation of the pri-
mary LAI estimates at a 250-m and 500-m resolution using the temporal 
and spatial weighted average; because the 500-m estimates are based on 
six surface reflectance bands with a higher modeling accuracy, the 250- 
m estimates from two bands are adjusted accordingly; and 5) validation 
of the new V6 GLASS LAI product using in situ measurements and inter- 
comparison with the existing products. The details are described in the 
following subsections. 

2.1. Creation of global training samples 

Sufficient and representative training samples are the prerequisite of 
any deep learning model for remote sensing retrieval (Yuan et al., 2020). 
Our sampling strategy is to select global large samples of different 
vegetation types over different latitudes by ensuring that they have 
adequate temporal variations and also represent “true values”. 
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First, to reduce data redundancy and ensure adequate temporal 
variations, different types of the LAI temporal curves are identified by 
adopting the K-means clustering analysis of the GLASS V5 LAI and 
MODIS NDVI time-series curves sampled in the year 2014. Time-series 
GLASS LAI can indicate the vegetation seasonal variations, while 
NDVI can indicate whether the reflectance is contaminated by the cloud 
to some extent, based on the fact that cloud-contaminated NDVI usually 
shows lower values than NDVI under clear-sky conditions (Holben, 
1986). Each MODIS land-cover type is clustered separately. The optimal 
number (k) of clusters is solved using the Calinski–Harabasz index 
(Caliński and Harabasz, 1974), which is defined as the ratio of the 
overall between-cluster and within-cluster variances with respect to k. 
After this procedure, a total of 40,712 clusters are generated. Basically, 
one cluster corresponds to one type with its unique seasonal change of 
LAI and the satellite observation condition. 

To ensure each cluster represents the “true” LAI time-series, three 
LAI products (GLASS V5, MODIS C6, and PROBA-V V1) are compared to 
generate the representing LAI curves for a temporal sampling of 2 years 
(2014 and 2015, 92 time steps (one time step corresponds to 8-day)) 
over the whole growing season in both the northern and southern 

hemispheres. For land types of permanent snow and barren, we set 
MODIS LAI to 0 to avoid invalid values, and the same setting is applied 
to GLASS and PROBA-V LAI when they contain invalid values. For other 
land cover types, the percentage when three products all fail to provide a 
valid LAI within a year is extremely small, about 3.7 × 10− 6, and also 
about 70% of these pixels have corresponding NDVI values smaller than 
0.2. As the Bi-LSTM model tolerates the noises in the samples, the LAI 
values of these data are also set to 0. For each pixel in each cluster, its 
mean square error (MSE) among these three LAI products is calculated 
as 

MSE =
∑92

t=1
[MSE(GLASSt,MODISt)+MSE(GLASSt,PROBAVt)

+MSE(PROBAVt,MODISt) ]

(1)  

where t is the time step. 
As the quality control (QC) information contained in MOD09A1 

product cannot help users identify cloud-sky conditions, the QC layer 
contained in MODIS LAI is used instead to calculate the percentage of 
high-quality LAI retrievals (HQ), which is similar to the percentage of 

Fig. 1. GLASS 250-m LAI product (version 6) algorithm flowchart.  
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yearly clear-sky days in MOD09A1 data. We take MODIS LAI using the 
main algorithm with or without saturation as high-quality data (QC <
64). For each cluster, four pixels with the least MSEs and different HQ 
ranges (30%, 50%, 80%, and 100%) are selected to represent this 
cluster. As the MODIS LAI product is generated without pre- or post- 
processing of the cloud contaminated pixels and fluctuates more than 
GLASS and PROBA-V LAI, at each time step of the 2-year length, the 
average of GLASS and PROBA-V LAI is taken as the LAI value of the 
sample pixel if their difference is smaller than one unit, or the median 
value of MODIS, GLASS, and PROBA-V LAI is taken. If both MODIS and 
PROBA-V LAI are invalid at a time step, the GLASS LAI is taken. After the 
above procedure for each land cover type is performed, each 4◦ × 4◦

window is checked, and if no representative LAI curve is selected in the 
window, one LAI curve is added according to the above criteria. At last, a 
total of 52,997 representative LAI curves are created. 

2.2. Selection of the deep learning model 

2.2.1. Networks 
To learn the temporal relationships between the MODIS surface 

reflectance and LAI, we evaluate four machine learning architectures 
that can interpret the temporal features in data, including GRNN, LSTM, 
GRU, and Bi-LSTM.  

1) GRNN 

GRNN is a feed-forward neural network that can estimate continuous 
variables using nonparametric estimators of the probability density 
function (Specht, 1991). It is known for its effective fitting ability for 
sparse datasets. There is no iterative process in training GRNN, but the 
free smoothing parameter (σ) needs to be estimated. GRNN consists of 
four layers: input, hidden, summation, and output (Fig. 2a). The neurons 
contained in the first three layers are fully connected, while the neurons 
in the summation layer are divided into the summation neurons and a 
division neuron. GRNN is used in the previous GLASS LAI algorithm 
(Xiao et al., 2014) for training the model between the fused MODIS and 
CYCLOPES LAI with reprocessed MODIS surface reflectance by adopting 
a holdout method to estimate the smoothing parameter.  

2) LSTM, GRU, and Bidirectional LSTM 

One problem in the feedforward network is in characterizing the 
sequence features with gaps in variables. The RNN, which can learn to 
process sequence data using the internal memory state recursively, has 
become a solution (Thireou and Reczko, 2007). As improved variants of 
RNN architecture, LSTM and GRU networks can address the exploding 
and vanishing gradient problem of RNN (Cho et al., 2014; Hochreiter 

Fig. 2. Structures of the four deep learning models adopted in this study: (a) GRNN: X is the time series of surface reflectance, n is the number of samples, Y is LAI, 
and m is the time series length of LAI; (b) LSTM; (c) Bi-LSTM; (d) GRU. In subplots (b-d), Xt and Yt is the surface reflectance and LAI at time step t, respectively, and ht 
and ct are the hidden state and current state at time step t, respectively. 
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and Schmidhuber, 1997). An LSTM layer is composed of a set of memory 
cells that contain the input gate, output gate, and forget gate. The cell 
state can store long-term information, and the three gates can modulate 
the flow of information. The key feature of LSTM is that these memory 
cells can selectively keep or discard relevant information at each time 
step (Yildirim, 2018). Fig. 2b shows the LSTM architecture and its inner 
cell structure. During a forward pass, the previous cell state (ct− 1) is first 
regulated by the forget gate using the current input (Xt) and previous 
output hidden state (ht− 1); then, the current cell state (ct) is computed 
using the activation value of the input gate and previous memory; at last, 
the output of the cell (ht) is derived by multiplying the activation of the 
output gate. The forget gate determines the amount of the previous in-
formation to keep while the input gate decides which new information 
to be added. 

The GRU is a variant of LSTM that has fewer parameters and superior 
speed compared to LSTM. The structure of GRU and its inner workings is 
shown in Fig. 2d, where only the hidden state passes between time steps. 
The update gate and reset gate are the only two gates inside the GRU 
cell, which are derived from the previous hidden state and current input, 
and they control the extent of the previous state to be retained and new 
information to be added to derive the current hidden state. 

The Bi-LSTM is another alternative RNN containing two separate 
recurrent net layers: the forward and backward layers (Graves and 
Schmidhuber, 2005). As shown in Fig. 2c, these two layers are connected 
to each other, and both are connected to the output layer; with such a 
structure, Bi-LSTM can learn both the previous and future information of 
the time series at each time step. 

2.2.2. Datasets for model training 
The corresponding 2014–2015 time-series MODIS surface reflec-

tance data at the representing pixels are extracted as the control vari-
ables, and the fused time-series LAI from MODIS, PROBA-V, and GLASS 
LAI (see Section 2.1) is the target variable. The samples are randomly 
divided into three groups, namely, the training dataset used to obtain a 
deep learning model (70%), the validation dataset used to select the 
optimal model (20%), and the test dataset used for evaluating the final 
model (10%). 

2.2.3. Model training 
At first, different machine learning models are evaluated to choose 

the most suitable model for LAI estimation. To reduce model complexity 
and save training time, only 1-year time-series LAI data in 2014, the first 
two red and near-infrared bands (b1, b2) at central wavelengths of 645 
and 858 nm, and three angles (solar zenith, view zenith, and relative 
azimuth angles) of MODIS surface reflectance are used for training. The 
four machine learning models are implemented using the deep learning 
toolbox in MATLAB (version 2020a). For the GRNN model training, we 
use the same procedure as in the previous GLASS LAI algorithm, except 
we use the updated training samples and keep the original surface 
reflectance data without reprocessing. For the three deep learning 
models (LSTM, GRU, and Bi-LSTM), they are designed as one input layer, 
one LSTM/GRU/ Bi-LSTM layer with 200 nerus, one dropout layer, and 
one regression layer; we keep the same training algorithm and param-
eters, using the Adam optimizer, an initial learning rate of 0.0001, a 
batch size of 100, and max epochs of 100. However, different training 
methods are likely better suited to different models. 

Then, the time-series length is investigated to determine the optimal 
temporal length on the best-performing model. Training data with 23 
different temporal lengths from 32 days to 2 years (32-day time interval) 
are used in this evaluation. After that, different combinations of the 
MODIS surface reflectance bands with a temporal length of 1 year are 
further evaluated in selecting suitable feature sets for the deep learning 
model. The three solar and viewing angles (solar zenith, view zenith, 
and relative azimuth angles), as well as the first two bands of MODIS 
surface reflectance, are first explored as the basic combination, and 
other bands are added successively. Finally, we retrain the selected deep 

learning model using the suitable feature sets and temporal length to 
determine the final 500-m LAI estimation model. As the MODIS 250-m 
surface reflectance has only two bands (b1, b2), the 250-m LAI model 
is finally retrained using the selected deep learning model with the 
optimal temporal length and the basic band combination. 

2.3. Estimating LAI at 250-m and 500-m resolutions 

We first use the best trained model along with the time-series MODIS 
surface reflectance data to estimate global time-series LAI, with a spatial 
resolution of 500 m and a time frequency of 8 days. It takes about 24 h to 
produce 2 years’ global 500-m LAI data on a single GPU, which is about 
10 times faster than generating the GLASS V5 LAI product. 

Because of the training error of the model, the derived LAI time series 
at two successive time windows of the optimal temporal length is not 
necessarily continuous. According to the model evaluation result (Sec-
tion 4.2), the optimal temporal length of the time series is 2 years (92 
time steps (t)). Similar post-processing of the previous GLASS algorithm 
is adopted here (Xiao et al., 2014). We calculate the time-series LAI 
twice, with a time shift of half of the time-series length (1 year), and 
multiply a weight function by the two time-series LAI to derive the final 
estimate (Eq. (3)). The weight function (w) is also adopted from the 
previous GLASS algorithm and updated as follows: 

w =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 (1 ≤ t ≤ 4)

0.5*
(

cos
(
− π*t

37
+

π*42
37

)

+ 1
)

(5 ≤ t ≤ 42)

1 (43 ≤ t ≤ 50)

0.5*cos
(

π*t
37

−
π*51

37

)

+ 1
))

(51 ≤ t ≤ 88)

0 (89 ≤ t ≤ 92)

(2)  

and the LAI at time step (t) for the current year (LAIt) is calculated as 

LAIt = LAI1t+46∙wt+46+LAI2t∙wt (1 ≤ t ≤ 46) (3)  

where LAI1 is the time-series LAI for the previous and current year, and 
LAI2 is the time-series LAI for the current and following year. 

The 250-m LAI model is executed with 250-m surface reflectance to 
estimate the global 250-m, 8-day LAI. The computation time for the 250- 
m LAI product is nearly twice that of the 500-m product, as the number 
of pixels has increased fourfold, while the 250-m model computational 
speed for a pixel is slightly higher (14%) than the 500-m model, and the 
250-m time-series data only needs to be calculated once, because the 
next consolidation procedure ensures the its spatiotemporal consistence 
with the 500-m data. 

2.4. Consolidation of 250-m and 500-m estimates 

The 500-m estimates from the six-band surface reflectance are more 
accurate than the 250-m estimates with two bands, according to the 
evaluation results (Section 4.2). To maintain their consistency, we apply 
a post-processing procedure to the 250-m estimates. Within each 500-m 
pixel, the four 250-m pixels (LAI250i) are normalized to match the 500- 
m value (LAI500): 
(

̃LAI2501 ̃LAI2502
̃LAI2503 ̃LAI2504

)

=

(
LAI2501 LAI2502
LAI2503 LAI2504

)

×
4⋅LAI500
∑4

1
LAI250i

(4)  

where ̃LAI250i represents the normalized 250-m LAI values. 
Finally, the spatiotemporal continuous GLASS LAI (version 6.0) 
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product is generated, with a time span from 2000 to 2020, a frequency of 
8 days, and two spatial resolutions of 500 m and 250 m. 

2.5. Evaluation of the GLASS V6 LAI product 

The GLASS V6 LAI products are evaluated using two widely used 
approaches for remote sensing product validation (Justice et al., 2000; 
Wu et al., 2019). First, they are directly validated using ground datasets, 
including the LAI reference maps regressed from field measurements 
and high-resolution satellite data, and ground LAI datasets representa-
tive of 3-km collected from several ground observation networks. The 
accuracies of GLASS V6 LAI are quantified at the 250-m, 500-m, and 3- 
km resolution scales. Five metrics are used in the validation: number of 
samples points (N), R2, RMSE, bias, and the percentage of pixels meeting 
the target accuracy requirement (P). 

Second, they are inter-compared with the existing LAI products, and 
the spatial continuity is assessed at the global scale using the mean LAI 
in January and July of 2018. The temporal consistency is also analyzed 
at eight typical sites with different biome types. At last, the global LAI 
trend from 2000 to 2018 is analyzed. The LAI products are first aggre-
gated to 0.05◦ at their original temporal resolutions, and the annual 
average LAI of MODIS, PROBA-V, GLASS V5, and V6 products are 
calculated for the land surface between 70◦ N and − 60◦S. The same 
quality filter criterion is applied for GLASS V5, V6, and PROBA-V 
products (pixels with LAI > 7 and water pixels are filtered out). As for 
MODIS LAI, pixels with a low QC indicator or meeting the above crite-
rion are filtered out. For a fair comparison, land-cover types of perma-
nent snow/ice and barren are set to zero for each product. 

3. Data 

3.1. Satellite products 

A total of six global satellite products are used in this study, namely, 
the MODIS LAI, GLASS LAI, PROBA-V LAI, MODIS 250-m and 500-m 
surface reflectance, and MODIS land-cover type products. The three 
LAI products are used to construct the time-series LAI samples, while the 
surface reflectance and land-cover type products are used to train the 
deep learning model as well as to produce global LAI data.  

1) MODIS LAI (MCD15A2H, V6) 

MODIS LAI is defined as true LAI and accounts for clumping at the 
plant scale. The Terra+Aqua MODIS LAI product is produced based on 
biome-specific LUTs generated from a three-dimensional radiative 
transfer model; also, a backup solution that links the Normalized Dif-
ference Vegetation Index (NDVI) to LAI is activated when the main al-
gorithm fails. After the daily LAI is retrieved from MODIS daily red and 
near-infrared (NIR) surface reflectance, temporal compositing and 
quality control are applied to generate the 8-day product (Myneni et al., 
2015; Myneni et al., 2002; Yan et al., 2016a). Evaluation of the 
Collection 6 MODIS LAI shows that it agrees well with the field LAI 
measurement. Besides, it can capture the seasonality of different biomes, 
except for the evergreen broadleaf forest (EBF), owing to the lack of 
high-quality satellite observations (Yan et al., 2016b).  

2) PROBA-V LAI (V1) 

The PROBA-V LAI (V1) of CGLS (Copernicus Global Land Service) is 
produced using an artificial neural network (ANN) from the PROBA-V 
red and NIR surface reflectance (Baret et al., 2016b). The ANN is 
trained from the weighted average of V3.1 CYCLOPES and the Collection 
5 MODIS LAI product. Then, temporal compositing, filtering, and gap 
filling are applied to the instantaneous LAI estimates by ANN, discrim-
inating between EBF and no-EBF pixels. Note that CYCLOPES LAI is 
defined as effective LAI and only accounts for clumping at the landscape 

scale. However, as pointed out by Baret et al. (2013), for lower LAI 
values, clumping described at the plant level in MODIS approximates 
clumping at the landscape scale in CYCLOPES; for higher LAI values, the 
fused LAI preserves the clumping at the plant scale using the heuristic 
arguments method. Therefore, PROBA-V LAI is deemed as true LAI. 
Recent validation of the PROBA-V LAI product revealed that PROBA-V 
LAI agreed better with ground reference data from 20 NEON sites 
than MODIS LAI and VIIRS LAI products; besides, this product also 
showed smoother temporal profiles compared to the MODIS LAI product 
(Brown et al., 2020; Fuster et al., 2020).  

3) GLASS LAI (V5) 

GLASS V5 LAI is produced from MODIS surface reflectance data 
through a GRNN, which is trained from the fused time-series LAI from 
the CYCLOPES and MODIS LAI and the reconstructed MODIS red and 
NIR surface reflectance (Liang et al., 2021; Xiao et al., 2014). As the 
CYCLOPES LAI is converted to true LAI using POLDER derived clumping 
index product (Chen et al., 2005) before fusing with MODIS LAI, the 
definition of GLASS LAI is also true LAI. Several validation studies have 
demonstrated its high accuracy among long-term, coarse-resolution LAI 
products (Jin et al., 2017; Li et al., 2018; Xu et al., 2018). The main 
characteristic of GLASS LAI is its temporal and spatial continuity and its 
smooth temporal profiles, which stem from the reprocessing of the input 
surface reflectance (Liang et al., 2021). 

The basic characteristics of the three LAI products are given in 
Table 1. Note that these three LAI products are defined as the true LAI. 
Two-year LAI products in 2014 and 2015 are used to create the global 
training samples. For creating the LAI training samples, simple quality 
control is performed on the three LAI products: LAI outside [0, 7] range 
is set as invalid values, as the maximum physical value of moderate- 
resolution LAI is 7 (Baret et al., 2016a). For product evaluation and 
inter-comparison, the MODIS LAI pixels with QC ≥ 64 are filtered out.  

4) MODIS surface reflectance product (MOD09A1, MOD09Q1, V6) 

Seven visible, near-infrared, and shortwave surface reflectance 
bands, as well as the sun illumination and satellite viewing geometry 
information (solar zenith angle θs, view zenith angle θv, and relative 
azimuth angle φ) provided by MOD09A1 product are used as the pri-
mary input datasets of this algorithm. The central wavelengths of the 
seven MODIS surface reflectance bands (b1, b2…b7) are at 645, 858, 
469, 555, 1240, 1640, and 2130 nm, respectively. Besides, the 250-m 
red and NIR reflectance provided by MOD09Q1 are also used to pro-
duce the 250-m LAI. 

Note that although the MODIS surface reflectance has been atmo-
spherically corrected for gases, aerosols, and Rayleigh scattering, re-
sidual noise caused by clouds still exists. Unlike previous GLASS LAI 
algorithms, the surface reflectance is not smoothed in this deep learning 
framework; during model training and LAI production, the MODIS 
surface reflectance data (including reflectances and angles) is specified 
as zero when it has reflectance value that exceeds the range [01], or 
when the solar zenith angle is larger than 85◦, where atmospheric 
correction is not applicable (Vermote and Ray, 2015).  

5) MODIS land-cover product (MCD12Q1, V6) 

The 500-m static MODIS land-cover product in 2014 is employed to 
classify the GLASS LAI and MODIS NDVI pixels into different land-cover 
types, for further clustering of the LAI for each International Geosphere- 
Biosphere Program (IGBP) land-cover type (Sulla-Menashe and Friedl, 
2018). The IGBP land-cover classification scheme has 16 classes, 
including 11 natural vegetation types (evergreen needleleaf forests 
(ENF), evergreen broadleaf forests (EBF), deciduous needleleaf forests 
(DNF), deciduous broadleaf forests (DBF), mixed forests (MF), closed 
shrublands (CSH), open shrublands (OSH), woody savannas (WSA), 
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savannas (SAV), grasslands (GRA), permanent wetlands (WET)), 3 
developed and mosaic lands (croplands (CRO), urban and built-up lands 
(URB), cropland/natural vegetation mosaics (CVM)), and 2 non- 
vegetated lands (permanent snow and ice (SNO), and barren (BSV)). 

Although the LAI, surface reflectance, and land-cover products are 
used for model development, the GLASS-V6 LAI production model in-
puts only include the MODIS surface reflectance time series and the 
associated angular information. In post-processing, water masks pro-
vided by MCD12Q1 are used for filtering out the water pixels. 

3.2. Ground LAI reference data 

To directly validate the generated LAI product against field mea-
surements, we collect 79 available high-resolution LAI reference maps 
from 2000 to 2016 at 47 sites from Bigfoot (Gower and Kirschbaum, 
2008), VALERI (Baret et al., 2021), and ImagineS (Fuster et al., 2020) 
networks with different dominant biome types (Table S1). The LAI 
reference maps are generated from local regressions between the LAI 
ground measurements and the high-resolution satellite reflectance (such 
as Landsat and SPOT) acquired around the ground campaign dates. 
Among the 79 maps, 18 maps that only provide effective LAI are con-
verted into true LAI by dividing the corresponding clumping index, and 
as the field-measured or the Landsat/SPOT scale clumping index data 
are not available, the moderate-resolution clumping index product (He 
et al., 2012) is used here although the scale-mismatch error may be 
introduced. Next, we reproject the reference maps to MODIS sinusoidal 
projection and upscale them to 250-m and 500-m resolution to pair them 
with the LAI products. As the accuracy of the reference data may vary 
from site to site (Garrigues et al., 2008), a quality control process is 
applied using the relationship between NDVI and LAI (Kang et al., 2016) 
from the 79 maps. The NDVI is calculated from MODIS 500-m and 

250-m surface reflectance data around the reference LAI date. With the 
assumption that there should be a positive correlation in NDVI and LAI, 
the NDVI-LAI points falling inside the 10%–90% percentile in each LAI 
bin (100 bins from 0 to 10, with a width of 0.1) are selected as 
high-quality data (Fig. S1). 

Apart from the high-resolution reference LAI maps, the DIRECT 
dataset (http://calvalportal.ceos.org/web/olive/site-description), 
which is a collection of ground LAI measurements that can represent 3 ×
3 km area of each site, is also used for validation of the LAI products at 
the 3-km scale. 

4. Results 

4.1. Global representative samples 

A total of 52,997 global representing pixels are selected using the 
cluster analysis method described in Section 2.1, and their distribution is 
shown in Fig. 3, with 445 Benchmark Land Multisite Analysis and 
Intercomparison of Products (BELMAINIP) sites as references (Baret 
et al., 2006). The BELMAINIP network is designed to be representative 
of different land-surface types and conditions for evaluation of land 
biophysical products. BELMAINIP sites are taken as training samples for 
the previous version GLASS LAI algorithm. However, it has been re-
ported that the northern mid-latitude surface is slightly over- 
representing, while the bare soil, grass, and evergreen broadleaf sur-
faces are under-representing by the BELMAINIP network (Baret et al., 
2006). 

The selected pixels are distributed in different continents and lati-
tudes, covering each vegetation biome type. The number of samples for 
each biome is roughly proportional to the original IGBP land-cover 
surface area. Pixels at the bare land surfaces and snow-covered high 

Table 1 
Characteristics of the satellite products used in this study.  

Product (version) Spatial 
resolution 

Temporal 
resolution 

Timespan used in model 
development 

Timespan used in LAI 
production 

Data 
provider 

MODIS LAI (MCD15A2H V6) 500 m 8 days 2014, 2015 – NASA 
GLASS LAI (V5) 500 m 8 days 2014, 2015 – BNU 
PROBA-V LAI (V1) 300 m 10 days 2014, 2015 – CGLS 
MODIS surface reflectance (MOD09A1 

V6) 
500 m 8 days 2014, 2015 2000–present NASA 

MODIS surface reflectance (MOD09Q1 
V6) 

250 m 8 days – 2000–present NASA 

MODIS land cover (MCD12Q1 V6) 500 m yearly 2014 2000- present NASA  

Fig. 3. Distribution of the representative pixels (the number of pixels for each land-cover type is shown in the legend).  
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latitude areas, such as the Sahara Desert and Greenland Island, are also 
included. To evaluate the representativeness of the fused LAI values of 
the selected pixels, histograms of the maximum, mean, and all of the LAI 
values of the 2014–2015 time series for the fused LAI at the selected 
pixels, as well as the GLASS V5, MODIS, and PROBA-V LAI at the global 
land pixels are shown in Fig. 4. For the maximum LAI, the fused LAI at 
the selected pixels is well distributed between [0, 6], although its fre-
quency at the [6, 7] interval is lower, it is still between the distribution 
of the other three products at global land pixels (Fig. 4a). For the mean 
and all of the LAI values during 2014–2015, the distributions of the 
fused LAI samples are also similar to those of the three products at the 
global land pixels (Fig. 4b-c). The corresponding solar/satellite geome-
tries of the MODIS data are further examined to avoid the extrapolation 
of the trained model. As shown in Fig. 4d-f, the distributions of the solar 
zenith, view zenith, and relative azimuth angles of the 2014–2015 
MODIS reflectance data at the selected pixel are almost coincident with 
that of the global land pixels. The valid range of the solar zenith angle 
shown in Fig. 4d is [0, 85◦]; therefore, the models trained using these 
samples can only output the valid LAI values when the solar zenith angle 
is within this range. The frequencies for the selected pixels at the four 
HQ ranges (30%, 50%, 80%, and 100%) are 0.014, 0.08, 0.22, and 0.69, 
respectively, which are similar to the frequencies of global LAI pixels 
(0.015, 0.11, 0.20, and 0.67), indicating that the samples are able to 
represent the different types of clear/cloudy satellite observation con-
ditions within a year. 

4.2. Evaluation of the models 

The performance of the four machine learning models (GRNN, LSTM, 
GRU, and Bi-LSTM) in estimating time-series LAI is assessed using the 
training, validation, and test datasets using three metrics: the coefficient 
of determination (R2), root mean square error (RMSE), and bias. 

According to Table 2, the GRNN achieves the lowest accuracy on both 
the validation and test datasets (RMSEs are about 1.2), which is ex-
pected as the time-series reflectance is not reconstructed, and the effects 
of cloud and snow contamination degrade the accuracy. Because of the 
similar control over temporal information flow, LSTM and GRU have 
similar performance levels on the three datasets. The highest accuracy is 
achieved by Bi-LSTM, which can be attributed to its unique ability in 
learning the bidirectional information contained in the temporal 
datasets. 

The temporal length of the time-series data for the deep learning 
model was evaluated afterward. As shown in Fig. 5, the R2 and RMSE on 
the training dataset tend to be constant earlier than for the validation 
and test dataset. The lowest RMSE is observed at a temporal length of 80, 
84, and 88 for the training, validation, and test dataset, respectively. 
Considering the quality control of the fused time-series LAI, as well as 
the convenience for LAI production, we take 2 years (92 time steps) as 
the desirable temporal length. 

To select the suitable feature sets for the selected Bi-LSTM model, we 
take the three solar and viewing angles, as well as the first two surface 
reflectance bands (red and near-infrared) as the basis, and added other 
bands successively according to their sensitivity to LAI. Based on the 
global sensitivity analysis (Saltelli et al., 2010) using simulations by 
PROSAIL, one of the most widely used canopy radiative transfer models 
(Jacquemoud et al., 2009), the sensitivity order for MODIS reflectance 
data is b7, b6, b5, b4, and b3. The evaluation results of the different 
band combinations are shown in Table 3. Generally, as the number of 
bands increases from 2 to 7, the RMSEs on the validation and the test 
datasets decrease and are closer to the training RMSEs. However, 
including band 5 makes no difference to the validation and test results, 
but reduces the training accuracy. Also, the improvement by including 
band 4 is limited for training and validation. Thus, we remove band 5 
and band 4 successively. The accuracy on the three datasets improves 
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Fig. 4. Distribution of LAI values (bin width is 0.1) of the 2014–2015 time-series fused LAI samples at the representative pixels, and MODIS, PROBA-V, and GLASS 
V5 LAI at global land pixels: (a) “max LAI” represents the distribution of the maximum LAI values of the 2014–2015 LAI time-series, (b) “mean LAI” represents the 
distribution of the mean LAI values of the 2014–2015 LAI time-series, and (c) “LAI” represents the distribution of all the LAI values of the 2014–2015 time series; and 
distribution of (d) solar zenith, (e) view zenith and (f) relative azimuth angles (bin width is 1◦) of the 2014–2015 time-series MODIS surface reflectance data at the 
representative pixels and the global land pixels. 
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compared with the seven-band combination, and the best result is ob-
tained using six bands without band 5. A previous study (Fang and 
Liang, 2003) reported that the combination of red and NIR bands per-
formed best in estimating LAI from Landsat surface reflectance; how-
ever, this finding was based on the perfect atmospherically corrected 
images at a specific time. As we use time-series surface reflectance, in 
which noises inevitably exist, it is expected that adding more bands will 
aid in noise detection and removal when deriving temporal continuous 
LAI. 

Therefore, the Bi-LSTM model, using the six MODIS bands without 
band 5, as well as three solar and viewing angles for a temporal length of 
2 years with an 8-day interval as features (designated as the six-band 
model), is employed to produce the 500-m LAI. The 250-m LAI model 
adopts the same setting as the above 500-m model, except it uses the (b1, 
b2) band combination of MODIS surface reflectance as features (desig-
nated as the two-band model). The accuracy of the final retrained Bi- 
LSTM models for the 500-m and 250-m LAI is shown in the last two 
rows of Table 3, respectively. 

4.3. Direct validation of LAI products 

Direct validations of LAI products are performed at three scales: 250 
m for PROBA-V at 300 m and GLASS V6 at 250 m; 500 m for MODIS, 
GLASS V5, and GLASS V6 500 m; and 3 km for all of them aggregated 
from their original resolutions. 

Fig. 6a and b show the direct validation results of PROBA-V and 
GLASS V6 LAI product at the 250-m scale using 28 upscaled high- 
resolution LAI reference maps during 2014 to 2016 from ImagineS 
network. GLASS V6 and PROBA-V LAI have the same R2 value (0.56); 
however, the RMSE and bias of GLASS V6 LAI are better than those of 
PROBA-V by about 0.16 and 0.06, respectively. By adding the remaining 
reference maps during 2000 to 2013, when PROBA-V LAI is not avail-
able, the R2 of GLASS V6 improves to 0.67, while the RMSE is reduced to 
0.92 (Fig. 6c). Although a small bias of − 0.06 is observed, GLASS V6 
250-m LAI shows underestimation at high values compared to the 
reference LAI maps. 

Direct validation of MODIS, GLASS V5, and GLASS V6 500-m LAI 
product at the 500-m scale using 79 upscaled reference LAI maps are 
shown in Fig. 7. GLASS V6 achieves the highest accuracy (R2 = 0.68, 
RMSE = 0.87), followed by MODIS (R2 = 0.56, RMSE = 0.95) and GLASS 
V5 (R2 = 0.53, RMSE = 1.08). MODIS LAI has fewer validation points 
than GLASS because of the missing data; besides, MODIS LAI is under-
estimated, with a bias of − 0.28 at these sites. Fig. 8 shows the direct 
validation results of MODIS, GLASS V5, and GLASS V6 LAI products at 
the 3-km scale using the DIRECT dataset from 2000 to 2017. Most 
validation points are matched by GLASS V6 (N = 117). Consistent with 
the 500-m validation results, the highest accuracy is again achieved by 
GLASS V6 LAI (R2 = 0.73, RMSE = 0.83). Note that in both Figs. 6 and 7, 
there are data points saturated around 5 for the GLASS V6 LAI, and they 
came from one forest site (HARV in Bigfoot). The field LAI ranges from 
4.2–6.9 at this site on the validation date, while both GLASS V5 and V6 
products are clustered from 5 to 5.8, although MODIS LAI contains data 
gaps and exhibits larger uncertainty, and its maximum value is 6.4. The 
time-series LAI of different products at this site is shown in Fig. 12c, the 
MODIS, GLASS V5, and V6 products have underestimated by about 0.5 
compared to the LAI field data in 2000. GLASS V5 LAI has better ac-
curacy than MODIS LAI at the 3-km scale, but its accuracy is lower at the 
500-m scale, which may be because of the uncertainty introduced by its 
surface reflectance pre-processing procedure at the original 500-m scale, 

Table 2 
Evaluation of the different machine learning models using the training, validation, and test datasets.   

Training Validation Test  

R2 RMSE Bias R2 RMSE Bias R2 RMSE Bias 

GRNN 0.371 1.137 − 0.18 0.335 1.262 − 0.177 0.344 1.228 − 0.161 
LSTM 0.947 0.374 0.007 0.933 0.420 0.007 0.928 0.441 0.004 
GRU 0.945 0.383 − 0.019 0.930 0.431 − 0.019 0.928 0.443 − 0.021 
Bi-LSTM 0.969 0.287 0.019 0.964 0.310 0.017 0.960 0.328 0.019  

Fig. 5. Evaluation of temporal length in Bi-LSTM.  

Table 3 
Evaluation of the different band combinations of MODIS surface reflectance in Bi-LSTM.*   

Training Validation Test  

R2 RMSE bias R2 RMSE bias R2 RMSE bias 

b1, b2 0.969 0.285 − 0.006 0.961 0.322 − 0.005 0.964 0.306 − 0.009 
b1, b2, b7 0.973 0.268 0.010 0.965 0.308 0.010 0.966 0.299 0.006 
b1, b2, b6, b7 0.973 0.267 − 0.005 0.965 0.306 − 0.003 0.966 0.299 − 0.006 
b1, b2, b5, b6, b7 0.973 0.279 − 0.025 0.965 0.306 − 0.023 0.967 0.299 − 0.028 
b1, b2, b4, b5, b6, b7 0.971 0.279 − 0.019 0.966 0.305 − 0.019 0.966 0.299 − 0.021 
b1-b7 0.970 0.281 − 0.024 0.966 0.301 − 0.025 0.968 0.293 − 0.026 
b1, b2, b3, b4, b6, b7 0.971 0.278 − 0.024 0.967 0.299 − 0.024 0.968 0.291 − 0.026 
b1, b2, b3, b6, b7 0.971 0.279 0.021 0.966 0.301 0.020 0.967 0.292 0.019 
Final six-band model (500 m) 0.980 0.230 0.009 0.972 0.271 0.011 0.973 0.266 0.011 
Final two-band model (250 m) 0.980 0.228 0.011 0.968 0.290 0.012 0.969 0.283 0.010  

* Each band combination includes three solar and viewing angle bands. 
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and this error is spatially averaged when upscaling to 3-km; besides, 
GLASS V5 incorporated the 3-km field information in model training, 
while other products (including GLASS V6) are independent. 

The accuracy of each product for different biome types is further 

explained at different scales, using the upscaled LAI reference maps and 
values during 2000 and 2017, except for PROBA-V (2014–2016). Results 
(Table S2) show that the uncertainties of GLASS V6 250 m and 500 m 
LAI are within the range of 0.77–1.13 for different biome types, while 

Fig. 6. Direct validation of (a) PROBA-V and (b) GLASS V6 LAI product at 250-m scale using 28 upscaled high-resolution LAI reference maps during 2014 to 2016 
from ImagineS network; (c) direct validation of GLASS V6 LAI product at a 250-m scale using 79 high-resolution LAI reference maps during 2000 to 2016 from 
Bigfoot, VALERI, and ImagineS networks (red dashed lines represent the accuracy requirement, and P is the percentage of pixels meeting the accuracy requirement). 
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 7. Direct validation of (a) MODIS, (b) GLASS V5, and (c) GLASS V6 LAI product at a 500-m scale using 79 upscaled high-resolution LAI reference maps during 
2000 to 2016 from Bigfoot, VALERI, and ImagineS networks (red dashed lines represent the accuracy requirement, and P is the percentage of pixels meeting the 
accuracy requirement). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 8. Direct validation of (a) MODIS, (b) GLASS V5, and (c) GLASS V6 LAI product at a 3-km scale using the DIRECT ground measurement dataset during 2000 to 
2017 (red dashed lines represent the accuracy requirement, and P is the percentage of pixels meeting the accuracy requirement). (For interpretation of the references 
to colour in this figure legend, the reader is referred to the web version of this article.) 
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the uncertainty ranges of GLASS V5 (0.81–1.71) and MODIS (0.83–1.7) 
are higher. 

The target accuracy requirement of GCOS for the global LAI product 
is 15%; however, meeting this requirement remains a big challenge 
given the uncertainties of both field measurements and the regression 
based high-resolution LAI reference maps. Therefore, we use the same 
LAI requirement of 20% or 1 unit adopted by Brown et al. (2020) in 
evaluating the PROBA-V LAI product. According to the results in Fig. 6a 
and 6b, 77.1% PROBA-V 300-m LAI and 80.4% GLASS-V6 250-m LAI 
pixels are within the target accuracy at the ImagineS sites, while 77.7% 
GLASS-V6 250-m LAI pixels meet the requirement at the Bigfoot, 
VALERI, and ImagineS sites (Fig. 6c). 

4.4. Spatial consistency analysis 

The global distribution of the MODIS, PROB-V, GLASS V5 and V6 LAI 
in January and July of 2018 is shown in Fig. 9. The grey background in 
each subplot represents the vegetated land surface where the corre-
sponding LAI product is unavailable. The biggest difference in these 
products is the spatial coverage. In July, MODIS and PROB-V LAI can 
provide valid LAI values up to 85◦N. As introduced in Section 3.1, 
MODIS surface reflectance product is produced without atmospheric 
correction when the solar zenith angle is larger than 85◦ (Vermote and 
Ray, 2015), which roughly corresponds to 63◦N at the beginning of the 
year. PROBA-V only filters out pixels when the solar zenith angle is 

Fig. 9. Global distribution of the MODIS, PROB-V, GLASS V5, and V6 LAI in January and July 2018; the spatial resolution is 0.05 degree in geographic latitude/ 
longitude; (a) MODIS, January 2018; (b) MODIS, July 2018; (c) PROBA-V, January 2018; (d) PROBA-V, July 2018; (e) GLASS V5, January 2018; (f) GLASS V5, July 
2018; (g) GLASS V6, January 2018; and (h) GLASS V6, July 2018. MODIS, PROBA-V and GLASS-V5 LAI are set to 0 for the permanent snow and barren pixels when 
they do not provide values. 
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larger than 90◦. Both MODIS and PROBA-V fail to provide LAI values 
above about 50◦N in January, though they can provide valid LAI values 
at the large solar zenith angle (≤85◦) based on global statistics of the 
distribution of the LAI products and MODIS solar zenith angle data 
within a year. Therefore, the data produced at regions where the un-
derlying physical models all fail are actually empirical extrapolations. 
Besides, the MODIS LAI product does not provide LAI values for desert, 
snow, and ice land-cover surfaces, which may introduce errors when the 
land cover information is incorrect. 

As the pre-V5 GLASS LAI algorithm is trained on the BELMANIP sites, 
with a latitude of up to 70◦N, GLASS V5 LAI fails to provide any valid 
values for the vegetated land surface above 70◦N throughout the year 
(Fig. 9e and f). The GLASS V6 training samples are globally distributed 
and deep learning is effective in combining the advantages of various 
products. The Bi-LSTM model learns the relationship between surface 
reflectance and LAI during the training stage. As long as there is atmo-
spherically corrected surface reflectance above 70◦N with the solar 
zenith angle smaller than 85◦, the Bi-LSTM model can predict the valid 
LAI values. As for pixels with solar zenith angle larger than 85◦, they are 
interpolated with the nearby days’ valid LAI values. Therefore, 
compared to the above three products, the GLASS V6 LAI is spatially 
complete throughout the year although the uncertainties of these LAI 
values in very high latitudes need to be further quantified. 

Fig. 10 shows the distribution of the mean LAI along the latitude for 
MODIS, PROB-V, GLASS V5, and V6 products in January and July 2018, 
respectively. Generally, the MODIS PROB-V, GLASS V5, and V6 LAI 
products are consistent with each other, but PROBA-V LAI is slightly 
higher than the others. However, for the 0◦–15◦S region in January, 
MODIS LAI shows the lowest values among these four products, while 
the GLASS V5 and V6 LAI profile are between PROBA-V and MODIS, and 
closer to PROBA-V. This can be explained by the fact that in the tropical 
forest area, clouds contaminate the surface reflectance for most of the 
year, and MODIS LAI relies on a single-time retrieval algorithm that is 
easily affected by cloud contamination in its input reflectance. The 
PROBA-V and GLASS V5 LAI apply a smooth procedure after and before 
retrieval, so they are not easily affected by the clouds. This result 
demonstrates that our deep learning model can reduce the cloud impacts 
automatically based on the temporal signatures of MODIS data and 
output the time-series continuous LAI. 

Fig. 11 further displays the probability density function (PDF) of the 

four LAI products for different biome types in July 2018, according to 
MODIS land-cover product. The PDF shapes are generally consistent for 
shrubland (CSH and OSH), grassland, and barren sparse vegetation, 
while large discrepancies are observed by the forest (ENF, EBF, DNF, 
DBF, and MF), savanna (WSA, SAV), and crop types. Note that the 
savanna type usually has complicated structures, and the forest and crop 
types usually have large absolute LAI values. LAI estimation improve-
ments are warranted under such conditions. For the ENF forest, GLASS 
V6 exhibits a narrower distribution, with a peak around 3.2, while it is 
about 3.5, 3.4, and 3.2 for MODIS, GLASS V5, and PROBA-V, respec-
tively. The PROBA-V product has a higher peak LAI values for EBF, DNF, 
DBF, and MF than the other three. Generally, the peak value of our 
product is between that of the other three products. 

4.5. Temporal consistency analysis 

Fig. 12 presents the 21 years of the time-series LAI from MODIS, 
PROBA-V GLASS V5, and V6 LAI at eight DIRECT sites with different 
biome types from 2000 to 2020, and the corresponding time-series 
MODIS NDVI is shown as a reference. MODIS LAI shows more fluctua-
tion for the forest type (Fig. 12a–d) than for other biome types 
(Fig. 12e–h) because the forest area experiences more cloudy and snowy 
conditions. PROBA-V LAI is relatively smoother than MODIS; however, a 
sudden drop of LAI by 2 units is observed at the ENF site in 2019 without 
quality flags changing, and other LAI products remain stable compared 
to previous years (Fig. 12b). GLASS V5 and V6 LAI exhibit smooth time- 
series profiles in each biome type, although the V5 LAI shows discrep-
ancies from other products at the open shrub type (Fig. 12e). The LAI 
and NDVI trends are inconsistent at the Gnangara site (Fig. 12f). NDVI is 
about 0.1 higher in the middle of the years than in other seasons, while 
MODIS LAI has an opposite trend, PROBA-V has a similar trend, and 
GLASS V6 LAI remains stable within the years. The NDVI trend can be 
explained by the fact that this site is located in the woodlands in 
southwestern Australia, is characterized by a low cover of forest and 
shrub and dry background, and ~ 80% of the rain occurs from May to 
September, when some understory herbs appear (Veneklaas and Poot, 
2003). According to previous studies, LAI in this region varies little 
throughout the year (about 5%) owing to the long leaf span of the 
prominent species, as well as the foliage renewal during different times 
of the year (Farrington et al., 1989; Veneklaas and Poot, 2003). 

Fig. 10. Distribution of mean LAI along latitude for MODIS, PROB-V, GLASS V5, and V6 product in (a) January 2018 and (b) July 2018.  
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Fig. 11. Probability Density Function (PDF) with LAI bin width of 0.1 of the MODIS, PROB-V, GLASS V5, and V6 LAI for different land-cover types in July 2018.  

Fig. 12. Aggregated 3-km time-series LAI from MODIS, GLASS V5, GLASS V6, and PROBA-V products for eight DIRECT sites with different biome types during 
2000–2020, the corresponding NDVI is added as a reference. 
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Therefore, the GLASS V6 LAI provides a more reasonable LAI trend than 
other products at this site. 

These time-series plots further illustrate the quality of GLASS V6 LAI: 
it is time-series continuous without noise, can reflect the vegetation 
growth seasonality, and also corresponds well with the field 
measurements. 

4.6. LAI trend analysis 

To further evaluate the differences between GLASS V5 and V6 LAI 
products in characterizing the vegetation greening or browning trends, 
we run a linear regression analysis of temporal LAI curves on a pixel 
basis. The slopes of the linear regression at 0.05◦are shown in Fig. 13. 
Overall, two versions of the GLASS LAI products show similar spatial 
patterns. There are some outstanding patterns, for example, the greening 
trends over China and the browning trends over Amazon. 

The trends of the yearly average LAI values calculated from these 
four LAI products discussed in this paper are shown in Fig. 14. PROBA-V 
product has a short temporal coverage (6 years), but its annual LAI 
average values are close to GLASS V5 and V6 products. Note that 
PROBA-V LAI has decreased significantly from 2018 to 2019, while 
MODIS and GLASS V6 LAI are slightly increasing. MODIS LAI product 
shows the lowest values, which is caused by the lower values retrieved 
under cloudy-sky conditions, even after applying its quality control in 
the averaging calculation. However, the three long-term products 
(MODIS, GLASS V5, and GLASS V6) show similar greening trends, while 
the GLASS V6 product has a slightly larger increasing rate than the other 
two products. 

4.7. Improvements over the GLASS V5 LAI product 

In addition to the improved accuracy and spatial continuity of GLASS 
V6 over V5 LAI (Section 4.3 and 4.4), the improvement of GLASS V6 also 
includes the temporal consistency, particularly the removal of the un-
realistic seasonal variations of LAI in high latitudes of the Northern 
Hemisphere. We choose several pixel samples with the percentages of 
yearly clear-sky days (HQ) larger than 90% and randomly distributed 

Fig. 13. Slope of the regression line fitting the temporal curve of the annual average LAI (a) GLASS V5 and (b) V6 products from 2000 to 2018; the spatial resolution 
is 0.05◦ in geographic latitude/longitude. 

Fig. 14. Variations of the yearly average LAI values from 2000 to 2020 of the 
MODIS, PROBA-V, GLASS V5, and V6 products for the land surface between 70◦

N and − 60◦S. 
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from − 40◦S to 60◦N to show the differences from GLASS V5 LAI, and add 
the corresponding MODIS NDVI as a reference. As shown in Fig. 15, the 
first issue in GLASS V5 LAI is the instability compared to GLASS V6 for 
ENF and EBF pixels (Fig. 15a–d), and the second is the unrealistic 
growing cycle for DNF, DBF, and shrubland pixels (Fig. 15e, f, g, and k). 
Moreover, it fails to detect the multi-growing cycles for savanna and 
croplands in Fig. 15p and 15 t. Compared to GLASS V5, GLASS V6 LAI is 
more temporally consistent and better reflects the growing seasonality 
of different vegetation types. 

The previous GLASS LAI algorithm relies on the noise-removed 
reconstructed surface reflectance to derive a temporal continuous 
product. The reconstruction method is based on the temporal continuous 
vegetation index, which may cause significant errors when there are no 
clear-sky observations over long periods, such as in cloud- or snow- 
dominated winters in the high latitude of the northern hemisphere, 
monsoon-dominated regions during the rainy seasons, or cloud- 
dominated tropical areas. Here, we also show some cases under spe-
cial conditions where HQ ranges from 24%–63% in Fig. 16. For the EBF 
forests distributed in the cloud-dominated tropical areas (Fig. 16a-d), 
the HQ is lowest within the range from 24%–32%, when both GLASS V5 
and PROBA-V LAI show fluctuations, while GLASS V6 exhibits a more 
stable time series trend. For the ENF forest distributed above 55◦N with 
an HQ of ~60% (Fig. 16e-h), GLASS V6 shows similar seasonal trends to 
MODIS and PROBA-V LAI, while GLASS V5 has oscillations and fake 
growing seasons. For the DNF forest distributed above 65◦N with HQ of 
~50% (Fig. 16i-l), these four products exhibit the similar growing sea-
sonality, the only difference is whether the very low LAI values during 
winter time have been provided or not. For vegetation types above 70◦N 
with HQ of ~40% (Fig. 16 m-p), GLASS V5 does not provide any values 

during the whole year, while GLASS V6 still captures the vegetation 
variation and corresponds well with MODIS and PROBA-V LAI when 
they contain high-quality values. 

5. Discussion 

As different biomes have different canopy structures, in theory, the 
land-cover map can be added as a category variable and improve the 
model performance, but in reality, land-cover maps are not always ac-
curate, as the classification errors for certain land-cover types can be 
large. During the Bi-LSTM model training process, the data samples with 
different biome types are combined to reduce the uncertainties intro-
duced by land-cover products in the LAI production step. To compare 
with the biome-independent model, we also construct the Bi-LSTM 
models for six biome-types (similar to MODIS LAI algorithm) under 
the best band combination and temporal length (see Section 4.2) con-
ditions. Statistics (Table S3) show that these two kinds of models achieve 
similar accuracies; besides, there is no significant bias for different 
biome types, indicating that the biome-independent Bi-LSTM model for 
global LAI estimation is robust enough to account for the information of 
each IGBP biome-type. Thus, there is no need to include the land-cover 
map in the LAI production. 

Although several global LAI products have been generated from 
different satellite observations, they still fall short of the requirements of 
many applications. For example, the GCOS requires the global LAI 
products to have a spatial resolution of 250 m, daily temporal frequency, 
and accuracy of 15% for better simulations of climate and carbon-cycle 
models (GCOS, 2016). The GLASS-V6 LAI product presented in this 
paper is the first global long-term LAI product at the 250-m resolution. It 

Fig. 15. Time-series LAI from MODIS, GLASS V5, GLASS V6, and PROBA-V products for sample pixels with different biome types from 2014 to 2015, the corre-
sponding NDVI is added as reference (only the high-quality MODIS LAI (QC ≥ 64) is shown). 
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can meet the spatial resolution requirement but fails to meet the GCOS 
requirements of temporal resolution and accuracy, although the GLASS 
V6 LAI product is more accurate than other products compared in this 
study based on the direct validation. There may be several solutions to 
explore for more accurate LAI retrievals at pixel scale. For the physical- 
model based LAI retrieval methods, the first direction is to develop more 
accurate forward models that account for the canopy structure, soil, and 
leaf bi-directional reflectance properties. Another solution is to use more 
satellite observations by integrating satellite data at different spatial and 
temporal resolutions (e.g., different geostationary satellite data or polar- 
orbiting satellite data at different spatial resolutions), and to incorporate 
different sources of prior information to regulate the inversion (Ma 
et al., 2020; Ma et al., 2022). With improved LAI retrievals at the pixel/ 
site scale, the statistical methods can benefit from the higher-quality 
training dataset. Third, more machine learning methods should be 
further compared and evaluated in the LAI estimation, such as Gaussian 
Process Regression (Svendsen et al., 2020; Verrelst et al., 2013) and 
Random Forest (Houborg and McCabe, 2018; Kang et al., 2021), and 
new deep learning methods can be further combined and explored to 
take better advantage of the signatures of satellite data, such as con-
volutional neural networks, which can use the contextual signatures of 
remote sensing images (Chai et al., 2019; Li et al., 2021). 

The GLASS V6 LAI has a temporal resolution of 8 days, but there is no 
global daily LAI product that has been officially released yet. Techni-
cally the trained model can output the daily LAI by taking MODIS daily 
surface reflectance product (MOD09GA) as an input; however, whether 
the model can capture the daily variations of the land surface still needs 
further evaluation. The other feasible approach is to create the global 
training LAI samples at the daily resolution. This can be achieved by 
retrieving LAI at the representative pixels from the abovementioned 
directions. Besides, the 250-m LAI estimation model is developed from 
the 500-m data product in this study considering that these two reso-
lutions are close. However, this may introduce uncertainties to some 
degree due to the pixel heterogeneity (Tian et al., 2003). If the difference 
in spatial resolution is too large, this assumption may not be 

appropriate. Note that the 500-m GLASS V6 LAI has been aggregated to 
0.05◦ and 0.5◦ spatial resolutions for wider users. 

The Bi-LSTM can produce smoother and more continuous predictions 
even with noisy inputs, but the changing rate of the smoothed time se-
ries may not always correspond to extreme values that highlight 
important ecological changes/disturbances (Fig. S2). Further study is 
needed using in situ measurements to evaluate whether additional in-
formation on land cover, particularly on rapid or abrupt land-cover 
changes is beneficial for the algorithm performance. 

At last, in situ measurement networks under different conditions, 
especially under cloud-dominated tropical or high latitude areas, need 
to be expanded at the international level, for a more comprehensive and 
objective assessment of current global LAI products, and understanding 
of the LAI seasonal and yearly variations. 

6. Conclusion 

A deep learning Bi-LSTM model is applied to generate a 21-year 
(from 2000 to 2020) global spatiotemporally continuous LAI product 
at a spatial resolution of 250 m, which is denoted as the GLASS LAI V6 
product. The new model takes advantage of the existing global LAI 
products and the temporal information of MODIS surface reflectance 
effectively. 

A global sampling strategy is first applied to generate the fused time- 
series LAI samples from three existing global LAI products (MODIS C6, 
GLASS V5, and PROBA-V V1) when their values are the closest over 
major land surface types. A total of 52,997 samples are selected and then 
divided into training (70%), validation (20%), and test (10%) datasets. 
Four machine learning models are explored, and the Bi-LSTM out-
performs the GRNN, LSTM, and GRU in learning the temporal rela-
tionship between MODIS surface reflectance and LAI, and is used in 
generating the GLASS V6 LAI product. The Bi-LSTM model is established 
using six bands (except band 5) and the first two bands of 500-m MODIS 
surface reflectance, respectively. The RMSE values based on the test 
dataset are 0.266 (six-band model) and 0.283(two-band model). The 

Fig. 16. Time-series LAI from MODIS, GLASS V5, GLASS V6, and PROBA-V products for sample pixels under special conditions from 2014 to 2015, the corresponding 
NDVI is added as reference (only the high-quality MODIS LAI (QC ≥ 64) is shown, the percentage of MODIS high-quality retrievals (HQ) ranges from 24% to 63%). 
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two-band Bi-LSTM model is then applied to 250-m surface reflectance, 
and the estimated LAI values are normalized by those estimated using 
the six-band model at 500-m spatial resolution. 

Evaluation of the GLASS LAI V6 product is based on both validation 
using in-situ measurements and comparisons with the existing LAI 
products. Validation using 79 LAI high-resolution reference maps shows 
that the GLASS V6 LAI product at both 250-m and 500-m resolutions is 
more accurate with the RMSE of 0.92 and 0.86, compared to PROBA-V 
V1 LAI at 300 m and MODIS C6 and GLASS V5 LAI at 500 m (RMSE of 
0.98, 1.08, and 0.95, respectively). Comparisons with existing products 
show that GLASS V6 LAI has better spatial and temporal consistency 
(Sections 4.4 and 4.5). The improvements over GLASS V5 LAI product 
include better spatial continuity throughout the year and higher tem-
poral consistency in capturing the vegetation growing cycles. The GLASS 
V6 LAI product also shows a similar vegetation greening trend to that of 
GLASS V5 and MODIS. 

The Bi-LSTM LAI estimation model used in this study has several 
characteristics. First, the computational efficiency is greatly improved 
because the pre-processing of surface reflectance for smoothing and gap- 
filling is avoided. Second, the quality of the estimated new LAI values is 
not significantly degraded when the high-quality surface reflectance is 
absent for a long period owing to persistent cloud or snow cover. The 
main reason is likely that the Bi-LSTM model can extract information 
across 2-year surface reflectance rather than a single time point. 
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