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Abstract. Land surface temperature (LST) plays an important role in the research of climate change and various
land surface processes. Before 2000, global LST products with relatively high temporal and spatial resolutions
are scarce, despite a variety of operational satellite LST products. In this study, a global 0.05° x 0.05° historical
LST product is generated from NOAA advanced very-high-resolution radiometer (AVHRR) data (1981-2000),
which includes three data layers: (1) instantaneous LST, a product generated by integrating several split-window
algorithms with a random forest (RF-SWA); (2) orbital-drift-corrected (ODC) LST, a drift-corrected version of
RF-SWA LST; and (3) monthly averages of ODC LST. For an assumed maximum uncertainty in emissivity and
column water vapor content of 0.04 and 1.0 gcm™2, respectively, evaluated against the simulation dataset, the
RF-SWA method has a mean bias error (MBE) of less than 0.10K and a standard deviation (SD) of 1.10K.
To compensate for the influence of orbital drift on LST, the retrieved RF-SWA LST was normalized with an
improved ODC method. The RF-SWA LST were validated with in situ LST from Surface Radiation Budget
(SURFRAD) sites and water temperatures obtained from the National Data Buoy Center (NDBC). Against the
in situ LST, the RF-SWA LST has a MBE of 0.03 K with a range of —1.59-2.71 K, and SD is 1.18 K with a
range of 0.84-2.76 K. Since water temperature only changes slowly, the validation of ODC LST was limited
to SURFRAD sites, for which the MBE is 0.54 K with a range of —1.05 to 3.01 K and SD is 3.57K with
a range of 2.34 to 3.69 K, indicating good product accuracy. As global historical datasets, the new AVHRR
LST products are useful for filling the gaps in long-term LST data. Furthermore, the new LST products can
be used as input to related land surface models and environmental applications. Furthermore, in support of the
scientific research community, the datasets are freely available at https://doi.org/10.5281/zenodo.3934354 for
RF-SWA LST (Ma et al., 2020a), https://doi.org/10.5281/zenodo.3936627 for ODC LST (Ma et al., 2020c), and
https://doi.org/10.5281/zenodo.3936641 for monthly averaged LST (Ma et al., 2020b).

Land surface temperature (LST) is an important parameter
for energy exchange between Earth’s surface and the atmo-
sphere and thus an important indicator for global climate
change. Therefore, LST has been widely used in research and
applications of land surface processes and models, e.g., cli-
mate and meteorology, hydrology, and disaster monitoring
(Anderson et al., 2011; Jin and Dickinson, 2002; Van Der
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Werf et al., 2017). Compared to traditional ground observa-
tions, retrieving LST from remote sensing is an effective way
of taking advantage of the spatiotemporal coverage offered
by satellites. Since the 1970s, the accurate retrieval of LST
from satellite has been an active area of research in quanti-
tative remote sensing. The main sources for retrieving LST
from satellite data are thermal-infrared (TIR) remote sensing
and passive microwave (MW) remote sensing (Holmes et al.,
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2009; Li et al., 2013a), which both are effective means for
obtaining the radiance emitted by Earth’s surface. Although
MW remote sensing is less affected by cloud and fog, when
compared to TIR remote sensing, it is limited by factors such
as coarser spatial resolution, higher thermal sampling depth,
and higher uncertainty in emissivity, which results in a lower
retrieval accuracy (Zhou et al., 2017). Therefore, retrieving
LST from TIR remote sensing is still the dominant approach,
since it offers a better physical definition and higher retrieval
accuracy. LST retrieval from satellite TIR remote sensing is
based on the simplification of the radiative transfer model.
A variety of algorithms have been proposed for retrieving
LST from TIR data, e.g., split-window algorithms (SWA),
mono-window algorithms or single-channel algorithms, and
temperature-emissivity separation algorithms (TESs) (Gille-
spie et al., 1998; Li et al., 2013a; Wan and Dozier, 1996).
Selecting a suitable algorithm for retrieving LST depends on
the sensor’s number of TIR channels and their spectral spec-
ifications, as well as the available auxiliary input data.

The SWA is a good choice for retrieving LST from sen-
sors with two or more TIR channels centered at 11 and
12 um, e.g., Terra/Aqua MODIS, NOAA advanced very-
high-resolution radiometer (AVHRR), ENVISAT AATSR,
and Sentinel-3 SLSTR. Based on the idea that the atmo-
spheric absorption in the thermal band can be related to
the brightness temperature (BT) difference between two
adjacent channels, McMillin (1975) initially proposed the
SWA for retrieving sea surface temperature (SST) from
NOAA/AVHRR. SWAs for retrieving SST from various sen-
sors were developed, which were based on different assump-
tions (Llewellyn-Jones et al., 1984; Niclos et al., 2007). In-
spired by the success of the SST algorithm, the first SWA for
retrieving LST was proposed by Price (1984). However, in
contrast to nearly homogeneous and isothermal water bod-
ies, LST is affected by multiple additional factors, e.g., land
cover type (LCT), material-dependent emissivity, terrain, and
viewing geometry. Therefore, one or more terms were added
to the basic SWA to describe these effects, e.g., land sur-
face emissivity (Wan, 2014), vegetation cover fraction (Prata,
2002), view zenith angle (Becker and Li, 1990a), and water
vapor (Sobrino et al., 1991). Nevertheless, there are still lim-
itations in LST retrieval with SWAs (Li et al., 2013a), e.g.,
the requirement for a priori knowledge of emissivity and a
dependence of LST retrieval accuracy on SW coefficients,
which in turn depend on observation and atmospheric condi-
tions. Furthermore, due to the variation of land surface and
atmospheric conditions, no single SWA performs the best un-
der all conditions (Yang et al., 2020; Yu et al., 2009; Zhou et
al., 2019b).

Currently, several LST products derived from satellite
TIR remote sensing are available. Global LST products
for Terra/Aqua MODIS are available dating back to 2000,
e.g., MOD11/MYD11 (Wan, 2008, 2014; Wan et al., 2002)
and MOD21/MYD21 (Hulley and Hook, 2011). Similarly, a
JPSS-VIIRS LST product is available dating back to 2012
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(Guillevic et al., 2014) and China FengYun-VIRR LST is
available dating back to 2009 (Dong et al., 2012). The afore-
mentioned sensors observe Earth’s surface twice per day
with a spatial resolution of ~ 1km at nadir. For the user’s
convenience, some LST products are processed into differ-
ent temporal and spatial resolutions, e.g., daily, monthly,
1km x 1km, 0.05° x0.05°. The operational LST product re-
trieved from the (A)ATSR series between 1995 and 2012 is a
typical SWA LST product (Prata, 2002). AATSR’s nadir spa-
tial resolution onboard ENVISAT was approximately 1 km,
and its temporal resolution was 3 d. Since 2016, its successor,
SLSTR onboard Sentinel-3 A and B, provides daily tempo-
ral resolution and a consistent spatial resolution (Ghent et al.,
2017). Global LSTs retrieved from satellite TIR also include
Landsat LST (Parastatidis et al., 2017) and ASTER LST
(Hulley and Hook, 2011), which have significantly higher
spatial resolutions (e.g., about 100 m) but considerably lower
temporal resolutions (e.g., every 16d). LST products from
geostationary satellites are generated at lower spatial res-
olution (3-5km) but considerably higher temporal resolu-
tion (10-60 min), e.g., GOES-ABI LST for the Americas and
Africa (Yu et al., 2009); MSG-MVIRI/SEVIRI LST for Eu-
rope, Africa, and the Atlantic Ocean (Duguay-Tetzlaff et al.,
2015; Trigo et al., 2008); and FY-SVISSR/AGRI LST and
Himawari-AHI LST for the Asia-Pacific region (Choi and
Suh, 2018; Jiang and Liu, 2014). Dech et al. (1998) and
Pinheiro et al. (2006) provide African and European LST
for NOAA-14 AVHRR; Zhou et al. (2019a) provide an all-
weather LST product retrieved from combined TIR and MW
data over the Tibetan plateau from 2003 to 2018. There are
also a few LST products from MW (e.g., for SSM/I and
AMSR-E) (Aires et al., 2001; Jiménez et al., 2017) and LST
for land surface models (e.g., ECMWF and GLDAS) (Fang
et al., 2009; Viterbo and Beljaars, 1995); however, these LST
products have lower spatial resolutions and slightly differ-
ent meanings than TIR LST. In summary, from 1991 on-
wards, many global and regional satellite LST products are
available, but higher spatiotemporal resolutions (e.g., 1 km —
daily) are only available after 2000. At the same time, many
climate applications urgently need higher spatiotemporal res-
olution LST products for the time before 2000. It has been re-
ported that 1983-2012 was the warmest 30 years for nearly
1400 years (IPCC, 2014). The warm climate change trend
has also caused changes in many land surface processes, e.g.,
most glaciers on the Tibetan Plateau are in retreat and the ar-
eas covered by them are getting smaller and smaller (Yao et
al., 2012). The LST around glaciers is a highly useful indi-
cator of this phenomenon and allows for predicting trends
in glacier status (Steiner et al., 2008). Similar demands for
LST data also exist in global drought monitoring (Sdnchez et
al., 2018), studies of species distribution (Lembrechts et al.,
2019), and land surface modeling (Bechtel, 2012; Ghent et
al., 2017; Reichle et al., 2010). Therefore, it is meaningful to
extend the global LST time series with a relatively high spa-
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tiotemporal resolution (i.e., 5 km and daily) to the historical
NOAA AVHRR data before 2000.

A major factor limiting applications of AVHRR LST is or-
bital drift, which over the lifespan of the NOAA satellites
leads to shifts to later overpass times and, therefore, affects
temporal comparability. Two main approaches were devel-
oped to remove the effect of orbital drift. On the one hand,
based on the regular diurnal temperature variation typically
observed under clear sky, several researchers corrected or-
bital drift by fitting a diurnal temperature cycle (DTC) model
to reanalysis or geostationary datasets (Jin and Treadon,
2003; Parton and Logan, 1981) and then normalizing LST
to a given time. On the other hand, a relationship between
LST anomaly and solar zenith angle was used for correcting
LST to a given solar zenith angle (Gleason et al., 2002; Gut-
man, 1999; Julien and Sobrino, 2012). Various applications
made use of the two types of orbital drift correction methods
for AVHRR LST, but a general method for global application
is still missing; i.e., the former method suffers from the low
spatial resolution of its input datasets, while the latter leads
to inconsistent times. Liu et al. (2019a) proposed another
method for correcting AHVRR LST orbital drift, which fits
a DTC model to component temperatures of neighborhood
pixels and was reported to achieve good accuracy.

As a part of the Global LAnd Surface Satellite (GLASS)
product suite (Liang et al., 2020), the objective of this study
is to develop a long-term global LST product (1981-2000)
from historical NOAA AVHRR datasets. Section 2 describes
the simulation datasets used for developing consistent SWAs,
the input datasets for LST product generation, and the in situ
datasets for validating the retrieved LST. In Sect. 3, a practi-
cal approach for generating a single optimized LST product
is proposed, which integrates several well-established SWAs
through the random forest, which is termed RF-SWA. Fi-
nally, the retrieved RF-SWA LST is normalized with an im-
proved orbital drift correction method. Furthermore, emis-
sivity estimation for bare soil is improved by using ASTER
Global Emissivity Dataset (GED) and yields more accurate
estimates of land surface emissivity in Sect. 3.3. Section 4 de-
scribes the results and provides implementation details of the
LST retrieval method, LST validation, and gives an example
of the LST product. Data availability is given in Sect. 5. Con-
clusions and outlooks are provided in Sect. 6.

2 Datasets

2.1 Satellite remote sensing datasets
2.1.1 AVHRR datasets

The advanced very-high-resolution radiometer (AVHRR) is
a sensor onboard NOAA polar-orbiting satellite series. The
orbital period is 101.4 min and designed over-pass time at
the Equator is between 13:30 and 14:30ST (solar time)
depending on the satellite. The second AVHRR version
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Figure 1. Spectral response functions of NOAA-07, 09, 11, and 14
AVHRR and Terra ASTER.

(AVHRR/2) has five spectral channels, including a visible
band (0.55-0.68 um), a near-infrared band (0.75-1.1 pym), a
middle-infrared band (3.55-3.93 um), and two thermal bands
(10.5-11.3 and 11.5-12.5 um). Figure 1 shows the spectral
responses of the two AVHRR thermal channels of NOAA-
07/09/11/14. Nadir spatial resolution of the TIR channels is
1.1km x 1.1km, and scan angles range between —55 and
55°. AVHRR covers the Earth’s surface twice daily and has
been widely used to generate various local or global land
and sea surface parameters, e.g., the normalized difference
vegetation index (NDVI) and SST (Casey et al., 2010). In
this study, the AVHRR datasets from Long-Term Dataset
Records (Pedelty et al., 2007) (LTDR, https://ltdr.modaps.
eosdis.nasa.gov/, last access: 2 December 2020) are used,
including AVHO02C1 and AVH13Cl1, for which spatial res-
olution has been processed to 0.05° x 0.05° (Table 1). Those
two datasets include the top-of-atmosphere BT of the TIR
channels, NDVI, view zenith angle (VZA), view time, and
quality control (QC) flags, which provide a reference for dis-
tinguishing pure and cloudy pixels.

2.1.2 ASTER Global Emissivity Dataset (GED)

ASTER, onboard the Terra satellite, and has five TIR chan-
nels (Fig. 1). The ASTER GED used in this study was gener-
ated from clear sky ASTER TIR data between 2000 and 2008
with the TES algorithm and the water vapor scaling atmo-
sphere correction method (Hulley et al., 2015). The products
are output at 3” (~100m) and 30" (~ 1km) spatial resolu-
tion on 1° x 1° tiles. Channel temporal mean emissivity, LST,
and NDVI, as well as their standard deviation, global digital
elevation model (DEM), and land-sea mask, are part of the
GED. In this study, the ASTER GEDv3 with a 1km spa-
tial resolution was used to determine the global background
emissivity of bare land.

Earth Syst. Sci. Data, 12, 3247-3268, 2020
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Table 1. Details of the selected AVHRR datasets.

J. Ma et al.: Long-term land surface temperature product for NOAA AVHRR

Name Satellite Start date End date Spatial resolution ~ Temporal resolution
NOAA-07 24 Jun 1981 2 Feb 1985
AVH02C1.465 NOAA-09 4 Jan 1985 7 Nov 1988  0.05° x 0.05° Daily daytime
AVH13C1.465 NOAA-11 7Nov 1988 31 Dec 1994
NOAA-14 1 Jan 1995 31 Oct 2000

2.2 Atmospheric profiles and forward simulation
datasets

Global forward simulation datasets with good representa-
tiveness are necessary for developing and evaluating LST
retrieval algorithms. This requires a reliable atmospheric
profile dataset as input. In this study, the well-established
SeeBor V5.0 (Borbas et al., 2005) and TIGR2000 V1.2
.(Chedin et al., 1985) atmospheric profiles were used to con-
struct the forward simulation datasets. Zhou et al. (2019b)
derived a global atmospheric profile dataset (GAPD) by
screening the SeeBor V5.0 atmospheric profiles and remov-
ing cloud-contaminated and redundant profiles. The GAPD
dataset has been used for developing the LST retrieval al-
gorithm for NOAA-20/VIIRS and Sentinel-3/SLSTR (Liu et
al., 2019b; Yang et al., 2020): it contains 549 global profiles
with a column water vapor content (CWVC) range of 0.014—
7.939 g cm™2 and near-surface air temperature (NSAT) range
of 224.25-309.05 K. Here, the GAPD was used to generate
a training dataset (TRA-G): globally representative observa-
tion conditions were simulated by varying the viewing geom-
etry and land surface characteristics over a realistic range for
a limited profile dataset (Zhou et al., 2019b), i.e., for each
profile 10 surface temperatures (7s), 15 view zenith angles
(VZA), and 48 land surface emissivities (LSEs, ¢) were set.
Specifically, 75 was set relative to NSAT with the difference
(T;-NSAT) covering the range of —16 to +20 K at an interval
of 4K. VZA was set to values from 0 to 70° at an interval of
5°. Emissivity was obtained from Johns Hopkins University
(JHU) spectral emissivity library by convolving the emissiv-
ity spectra with the spectral response functions of NOAA-07,
09, 11, and 14 AVHRR (Fig. 1). The corresponding emissiv-
ity ranges are provided in Table 2. For the remaining 4761
SeeBor clear-sky profiles (ATP-S) and 506 TIGR clear-sky
profiles (ATP-T), the corresponding simulations were per-
formed and used as evaluation datasets VAL-S and VAL-T,
respectively. In contrast to GAPD, for each profile in ATP-S
(ATP-T), we randomly set 10 (10) VZAs between 0 and 70°.
The corresponding LSE has been assigned according to the
LCT over which a profile is located (Snyder et al., 1998) and
T; for VAL-S and VAL-T was set to the corresponding NSAT.
Table 3 summarizes the three profile datasets and the corre-
sponding simulation datasets. More details can be found in
Zhou et al. (2019b) and Yang et al. (2020).
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Table 2. Global LSE ranges determined from JHU spectral emis-
sivity library for AVHRR channel centered at 11 and 12 um.

LSE at LSE at
Satellite and sensor 11 um (e17) 12 um (g12)
NOAA-07 AVHRR  0.674-0.996  0.692-0.991
NOAA-09 AVHRR  0.665-0.996  0.713-0.991
NOAA-11 AVHRR  0.670-0.996  0.697-0.991
NOAA-14 AVHRR  0.672-0.994  0.661-0.991

2.3 Ancillary data used for LST retrieval

Four ancillary datasets were used for LST retrieval: NSAT,
CWVC, LCT, and soil type. The MERRA-2 reanalysis
dataset (M2TINXSLV) provides NSAT and CWVC (vari-
ables in datasets: T2M and TQYV, respectively) with 0.5° x
0.625° spatial resolution and hourly temporal resolution;
nearest-neighbor sampling was used to match up with
AVHRR pixel and overpass time. AVHRR LCTs were ob-
tained from the University of Maryland (UMD) dataset (De-
fries and Hansen, 2010), which provides 14 LCTs (0: Water;
1: Evergreen Needleleaf Forest; 2: Evergreen Broadleaf For-
est; 3: Deciduous Needleleaf Forest; 4: Deciduous Broadleaf
Forest; 5: Mixed Forest; 6: Woodland; 7: Wooded Grassland,;
8: Closed Shrubland; 9: Open Shrubland; 10: Grassland; 11:
Cropland; 12: Bare Ground; 13: Urban and Built). The spa-
tial resolution of the UMD LCT dataset is 1km x 1 km. To
adapt its resolution of AVHRR, the dominant LCT within
each 0.05° grid was used as the LCT for AVHRR. The soil
type dataset employed for estimating AVHRR LSE is pro-
vided by the United States Department of Agriculture, which
is mainly based on the world soil map of FAO-UNESCO. Its
spatial resolution is 2’ (~0.03°), and the soil type of each
AVHRR pixel was also set to the dominant type.

2.4 In situ datasets

In situ measurements from the Surface Radiation Budget
(SURFRAD) network and the National Data Buoy Center
(NDBC) were used to validate the retrieved AVHRR LST.
The details and geographical distribution of the selected in
situ sites are provided in Table 4 and Fig. 2. SURFRAD was
established in 1993 and focuses on validating Earth’s radi-
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Table 3. Atmospheric profile datasets and corresponding simulation datasets.
CwVvC Number of Name of
Sources Name (g cm_z) NSAT (K) profiles VZA T, LSE Samplesize dataset
SeeBor V5.0 GAPD 0.014-7.939  224.25-309.05 549 15 10 48 3952800 TRA-G
ATP-S  0.005-4.999 201.96-313.50 4761 10 1 1 47610 VAL-S
TIGR2000 V1.2 ATP-T  0.058-8.199  233.85-314.16 506 10 1 1 5060 VAL-T
Table 4. SURFRAD sites and NDBC buoys used for LST validation.
ID Site Network Elevation Latitude  Longitude Sensor LCT Valid period
BND  Bondville, Illinois SURFRAD 230 40.0519 —88.3731 Eppley PIR  Cropland Jan 1995-Oct 2000
DRA  Desert Rock, Nevada ~ SURFRAD 1007  36.6237 —116.0195 Eppley PIR  Open Mar 1998-Oct 2000
Shrubland
FPK Fort Peck, Montana SURFRAD 634 48.3078 —105.1017 Eppley PIR  Grassland Jan 1995-Sep 2000
GWN  Goodwin Creek, SURFRAD 98  34.2547 —89.8729  Eppley PIR  Wooded Jan 1995-Oct 2000
Mississippi Grassland
PSU Penn. State Univ., SURFRAD 376  40.7201 —77.9309 Eppley PIR  Deciduous Jul 1998-Oct 2000
Pennsylvania Broadleaf
Forest
TBL  Table Mountain, SURFRAD 1689  40.1250 —105.2368 Eppley PIR Cropland  Aug 1995-Aug 2000
Boulder, Colorado
BEP 46025, 46027, 46053, NDBC 0 33.763- —119.053— thermistors  Water Apr 1982-Oct 2000
46054 60.587 146.833
BGL 45001, 45002, 45003, NDBC 175 41.677-  —82.398—  thermistors  Water Jul 1981-Oct 2000
45004, 45005, 450006, 48.061 —89.793
45007, 45008
BGM 42007, 42020, 42035 NDBC 0 26.968- —88.32—  thermistors ~ Water May 1990—Oct 2000
30.09 —96.693
BWA 41008, 41009, 44007, NDBC 0 28.508-  —70.141- thermistors  Water Feb 1982-Oct 2000
44013, 44025 43.525 —80.868

ation budget. Quality control is an integral part of the de-
sign and operation of the SURFRAD network, which results
in datasets of high-quality and well-defined measurement
uncertainties (https://www.esrl.noaa.gov/gmd/grad/surfrad/,
last access: 2 December 2020). Therefore, SURFRAD data
have been widely used for validating satellite-retrieved LST
products (Guillevic et al., 2014; Liu et al., 2019b; Martin
et al., 2019; Wang and Liang, 2009) and other fields. Six
sites providing in situ data between 1995 and 2000 were se-
lected. At these sites, upwelling and downwelling longwave
radiances are measured with highly accurate Eppley Preci-
sion Infrared Radiometers (PIR; wavelength: 4-50 um) at an
observation interval of 3 min. The PIRs were set up ~ 10m
above the ground, giving them a field of view (FOV) covering
approximately 70 x 70 m? (Guillevic et al., 2014). Historical
data from the NDBC (https://www.ndbc.noaa.gov/historical _
data.shtml, last access: 2 December 2020) provide hourly
samples of bulk water temperature measured with electronic

https://doi.org/10.5194/essd-12-3247-2020

thermistors, which are highly accurate and quality-controlled
by NDBC (https://www.ndbc.noaa.gov/qc.shtml, last access:
2 December 2020). Considering the thermal homogeneity of
the water surface, buoy temperatures are usually representa-
tive of the satellite pixel scale, even if it covers large areas.
To avoid mixed land—water pixels, only buoys at least 20 km
from the coastline were selected.

3 Methodology

Using an LST retrieval algorithm from TIR remote sens-
ing, especially with SWAs, is a well-established and vali-
dated method. However, no single algorithm performs best
under all conditions, even if it generally achieves good ac-
curacy (Yu et al.,, 2009). This suggests that a more stable
and robust LST retrieval algorithm may be obtained by in-
tegrating various individual LST retrieval algorithms. In this
study, the random forest (RF) ensemble method (Breiman,

Earth Syst. Sci. Data, 12, 3247-3268, 2020
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Figure 2. Locations of SURFRAD sites and NDBC buoys and the three sample areas. Blue squares indicate pyrgeometers; red circles

indicate contact thermistors.

2001) was utilized for integrating multi-LSTs (mLSTs) ob-
tained with several SWAs into a global AVHRR LST product.
First, widely used candidate SWAs were trained and evalu-
ated; these SWAs have been studied in previous work (Yang
et al., 2020; Zhou et al., 2019b) and are shown in Table 5
for readers’ convenience. Second, estimates of land surface
emissivity were improved by combining the NDVT threshold
method and ASTER GED. Third, the LSTs from the trained
candidate SWAs were integrated with the RF method: thus,
the approach is termed RF-SWA. Then, the instantaneous
RF-SWA LST was normalized to 14:30 ST (solar time) using
an improved orbital drift correction (ODC) method and the
RF-SWA LST and ODC LST products were validated against
in situ LST. Finally, for the user’s convenience, a monthly
averaged LST was also generated from the ODC LST with a
sample averaging procedure.

3.1 Refining the candidate algorithms

Forward radiative transfer simulations with PMODTRAN
(Berk et al., 2005; Huang et al., 2016) were performed on
a high-performance computing platform (2Intel @Xeon ES5-
2650 2.00 GHz (8Cores), 64 GB 1600 MHz) for the datasets
GAPD, ATP-S, and ATP-T described in Sect. 2.2; the cor-
responding simulated datasets were labeled TRA-G, VAL-S,
and VAL-T. Each forward simulation yields channel-specific
top-of-atmosphere radiances and BTs dependent on NSAT,
CWVC, and VZA. To simulate BTs measured by satellites
more realistically, Gaussian-distributed noise with a noise
equivalent differential temperature (NEAT) of 0.12 K, which
is one of the design goals for the AVHRR TIR channels, was
added to the simulated BTs. More details about the simula-
tions are provided in Zhou et al. (2019b).

Multiple regression was performed on the simulated train-
ing datasets, TRA-G, to determine the coefficients of the

Earth Syst. Sci. Data, 12, 3247-3268, 2020

candidate SWAs in Table 5. The TRA-G dataset was di-
vided into 480 groups based on NSAT, CWVC, VZA, and
T,-NSAT as follows: (i) the atmospheres were divided into
Cold-ATM and Warm-ATM with a NSAT threshold of 280 K,
and (ii) the data were divided into CWVC classes with an
interval of 0.5 gcm™2. This resulted in 3 subgroups of Cold-
ATM and 13 subgroups of Warm-ATM. (iii) The VZAs were
divided into intervals of 5°. (iv) Based on T-NSAT, the
data were divided into two subgroups, i.e., [—16,4] K and
[—4, 20] K, approximately representing daytime and night-
time cases, respectively. Based on regression against these
training datasets, look-up tables (LUTs) with coefficients for
each candidate SWA were established. The candidate al-
gorithms were then analyzed with respect to the standard
error of the estimate (SEE) and coefficient of determina-
tion (R?), and a sensitivity analysis was performed for the
main input parameters, e.g., LSE and CWVC, to test the sta-
bility and accuracy of the trained SWAs. Being consistent
with the uncertainty level in Zhou et al. (2019b), the vari-
ous uncertainty sources were grouped into two levels: (i) L1,
i.e., |8&11|max < 0.02, |8€12|max < 0.02, and [SCWVC|pax <
1.0gem™2, and (i) L2, i.e., 811 ]max < 0.04, |8&12|max <
0.04, and |SCWVC|pax < l.Ogcm’z. These uncertainties
will be added to €11, €12, and CWVC as random noises.
Datasets without added uncertainty were labeled LO. All
trained candidate algorithms were evaluated against the sim-
ulation datasets VAL-S and VAL-T.

3.2 Multi-LST ensemble

Based on the training and evaluation results (see Sect. 4.1),
a multi-LST ensemble method is proposed, which hopefully
achieves a more stable retrieval by integrating the most ro-
bust and stable SWAs. The method used to integrate the se-
lected SWAs is the Random Forest (RF) method proposed
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Table 5. Initial candidate split-window algorithms (SWAs).
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Name Formula Reference
OV1992  Ty=Ag+ ATy +Ay(Ty —T12) Ottlé and Vidal-Madjar
(1992)
FO1996 Ty = Ag+ ATy + Az (T — T12) + A3(T1q — Ti2)? Francois and Ottle (1996)
PR1984 Ts=Ao+ A1 T + Ay (T —To) + A3Ty1e11 + Ag (T — T12) (1 —e11) + AsTipAe Price (1984)
UC1985 Ts=Ag+A 1T +Ax(T11 —Ti)+A3(1 —¢) Ulivieri and Cannizzaro
(1985)
BL-WD  Ty=Ag+ (Al +AyIEE 1 A5l >(T11 +Tip)+ (A4+A5 £ 1 AglE )(Tll ~Ty)  Becker and Li (1990a);
Wan and Dozier (1996)
PPIO91 Ty =Ag+ A TU=To 4 4, Ta=To 4 gyl 4 Prata and Platt (1991)
VI1991 =Ag+ AT +Ay(T1y —T12)+A3% +A4% Vidal (1991)
UL1994 Ts=Ap+ AT+ Ay (T — Tio) + A3 (1 —e) + AgAe Ulivieri et al. (1994)
WA2014 A0+<A1+A2—+A3 )(T11+T12)+(A4+A5—+A6 )(Tll—le)—i— Wan (2014)
A7(Ty1 — Tp)?
FOW1996 Ty = Ag+ (A]w+A2w2+A3) T\ + (A4w + Asw? +A6) Tis + A7w + Agw? Francois and Ottle (1996)
SO1991 Ty = Ag+A  Tii +[Asw + A3 + (Aqw + As) (1 —£11) + (Agw + A7) Ae] (Ty) — Tip)+  Sobrino et al. (1991)
%Tﬂ [Agw + Ag(Ajow + All)Aé‘] — 1;812 T1» [Alzw +A13(A1qw + A15)A8]
ULWI1994 Ty = Ag+ A Ti1 + (Agw + A3)(Ty1 — T12) + (Aqw + As) (1 — &) + (Agw + A7) Ae Ulivieri et al. (1994)
CO1994 Ty = Ag+ ATy + Az (T11 — T12) + A3(T1) — T12)* + [(Agw + A5) Tiy + (Agw + A7)]  Coll et al. (1994)
(1—&)—[(Agw+ Ag) Ty +(Ajow+ Aq1)] Ae
SR2000 =Ag+ AT +Ay(T11 — Ti2)+ A3(Tq —T12)2—|—(A4w+A5)(1 —&)— Sobrino and Raissouni
(Agw + A7) Ase (2000)
MT2002 Ty = Ag+A1T1y + Ay (Ti1 — T12) + A3(Ty1 — T12)% + (Aqw + As) (1 —¢) Ma and Tsukamoto (2002)
BLI995  Ty=Ag+Ajw+[Ay+(Azweosd + Ag)(1 —e1)) — (Asw+ Ag) Ae](Ty; + Ti2)+  Becker and Li (1995)
[A7+ Agw + (Ag+ Ajow) (1 —e11) — (Ajjw + A1) Ae] (T — Ti2)
GA2008 — Ao+ A Ty + Ay (T — Tip) + A3(Tq —T12)2+(A4+A5w+A6w2)(l—s)+ Galve et al. (2008)

(A7 + Agw) Ae

Note that subscripts 11 and 12 denote channels centered at approximately 11 and 12 um, respectively, while 771 and 77, and €11 and €15 are their associated BTs and LSEs;
e=(e11 +€12)/2, Ae = (g11-€12), A; are coefficients, Ty in PP1991 is 273.15K, w is CWVC, and 0 is VZA.

by Breiman (2001). Compared to detailed analytic expres-
sions for explaining complicated nonlinear relationships, the
RF method has several advantages, including the ability to
process large databases with high efficiency, unbiased es-
timation, and especially minimizing the risk of overfitting
(Hutengs and Vohland, 2016). Therefore, the RF method has
been widely used in remote sensing applications, e.g., land
cover classification (Rodriguez-Galiano et al., 2012), land
surface parameter downscaling (Zhao et al., 2018), and es-
timating vegetation cover parameters (Mutanga et al., 2012).

The RF method utilizes an ensemble of many decision
trees. In the implementation of the RF ensemble method, a
random vector ®y is selected from the input training datasets
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(mLSTs, LST) with the Bootstrap sampling method. Here, k
is the number of samplings; mLSTs are the LSTs retrieved
with the individual SWAs, i.e., the predictors. LST, i.e., the
target variable, is known from the forward simulations. The
sample size of each sampling is two-thirds of the observa-
tions; for each sampling, a tree is grown using the training
set and ®y, which results in a tree predictor 7'(®g). Finally,
the LST predicted with the RF is formed by averaging over
the k trees (Eq. 1),

1k
g=72_i T (0. 1)
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Table 6. Coefficients for converting bare soil emissivity from ASTER to AVHRR (see Sect. 3.3).

Channel
Sensor centered at ap aj ap as as as RMSE R?
NOAA-07 ITum  0.0000 0.0049 —0.0071 0.0006 0.7749  0.2267 0.0001 0.99
12pm  0.3064 —0.1484 0.2676 —0.0657 —0.7622 1.3984 0.0016 0.91
NOAA-09 11pm  0.0005 0.0041  —0.0085 0.0029 0.8228 0.1781 0.0001  0.99
12pm  0.2513 —0.1392 0.2572  —-0.0757 —0.7070 1.4102 0.0014 0.94
NOAA-11 I1um  0.0007 0.0053 —0.0091 0.0020 0.7895 0.2115 0.0001 0.99
12um  0.2944  —0.1473 0.2666 —0.0699 —0.7404 1.3929 0.0016 0.92
NOAA-14 11pym 0.0013  —0.0083 0.0068 0.0042 0.8045 0.1912 0.0001 0.99
12pm  0.3945 —0.1591 0.2756  —0.0467 —0.8340 1.3647 0.0021 0.84

Along with the predicted LST, the importance of each vari-
able can be calculated using the residual sum of squares
(RSS), which usually has larger values for more influential
mLSTs. Additionally, the simple average (SA) method and
Bayesian Model Averaging (BMA) method are implemented
for comparison. To cover the real natural variability as much
as possible, datasets TRA-G (L0, L1, and L2), VAL-S (LO0),
and VAL-T (LO) are used as training datasets for the LST
ensemble model. The remaining datasets VAL-S and VAL-
T at uncertainty levels L1 and L2 are used for evaluating the
ensemble model. For the later generation of global LST prod-
ucts, only mLSTs from the selected SWAs are needed.

3.3 Estimating LSE

LSE is a key parameter in retrieving LST from TIR remote
sensing data. Depending on the spectral channels of the sen-
sor and the available temporal sampling, there are various
LSE estimation methods, e.g., the NDVI threshold method
(Sobrino et al., 2008), land-cover-based (L.C-based) method
(Snyder et al., 1998; Wan, 2014), TES method (Gillespie et
al., 1998), day—night method (Becker and Li, 1990b), and
Kalman filter method (Li et al., 2013b; Masiello et al., 2015).
The NDVI threshold and LC-based methods are widely used
in retrieving LST (Sobrino et al., 2008; Wan, 2014). How-
ever, those methods require the emissivity of the land cover
or the vegetation and bare (background) soil to be known. In
the TIR, emissivity spectra of dense vegetation are relatively
similar and, therefore, can be taken from spectral libraries;
these spectra can then be convolved with the sensor’s spec-
tral response functions to obtain channel effective emissivi-
ties. In contrast, the emissivity of bare soil varies consider-
ably, mainly due to variations of its components, roughness,
water content, and surface structure. Therefore, this study
employs a practical and robust method that combines the
ASTER GED and the NDVI-threshold method to determine
LSE.

First, the land surface is classified into pure bare soil, a
mixture of vegetation and bare soil, and pure vegetation. The
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emissivity in mixed areas (¢ ) is obtained as the weighted
sum of vegetation emissivity (&, v) and bare soil emissivity
(ex.s), where the fraction of vegetation cover ( fy) determines
the weights (Carlson and Ripley, 1997; Hulley et al., 2015):

& ZSA,va+5A,s(1_.fV)’ (2)

where the f, can be calculated as follows:

ot oy NDVI<NDVIy,
fo=1 1— o fOVL - NDVIpin < NDVI < NDVigay ,
1, NDVI > NDVIjnax

3)

where NDVIax and NDVI,yi, are the thresholds for separat-
ing into vegetation areas, mixed areas, and bare soil areas. In
order to obtain globally consistent fy values, NDVI.x and
NDVI,,in were set to 0.5 and 0.2 (Sobrino et al., 2001), re-
spectively.

According to Egs. (2) and (3), the ASTER thermal channel
emissivity of bare soil can be calculated as

AST _ _AST
asT _ & Ejv Jv
east =S “E Iy @)
I 1— fv
where S?ST,SfSVT, and 8)‘/\\SST are the ASTER emissivity for

the observation, dense vegetation, and bare soil in channel
Jj (j =10,...,14), respectively. The ASTER thermal chan-
nel emissivities for dense vegetation are given in Meng et
al. (2016).

In order to convert bare soil emissivities from ASTER
spectral channels to AVHRR spectral channels, the following
linear relationship is fitted to channel emissivities obtained
from the JHU bare soil spectral library (Salisbury, 1991):

AVH AST AST AST
Eis =aotaifigs @y +asep

AST AST
+a4813ys +a§814’s ) (5)

where sf;’H (i =11, 12) is the AVHRR bare soil emissivity
in channel centered at i and a; (k =0, ..., 5) are coefficients
(Table 6).
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Part I: Static bare soil emissivity
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Part II: Daily dynamic emissivity

ASTER GED AVHI3C1 AVHRR LCT LUT 2"

v
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Figure 3. Estimation of AVHRR LSE from ASTER GED, JHU spectral emissivity library data, LCT, and vegetation cover fraction.

Table 7. Emissivities of different vegetation types, water, and built-up surfaces for the AVHRR channel centered at 11 and 12 um.

NOAA-07 AVHRR ‘ NOAA-09 AVHRR ‘ NOAA-11 AVHRR ‘ NOAA-14 AVHRR

LCTs No.

11 pm 12 um ‘ 11 pum 12 um ‘ 11 um 12 um ‘ 11 um 12 um
Evergreen forest 1,2 0.989 0.988 | 0.990 0.987 | 0.989 0.988 | 0.990 0.987
Deciduous forest 4 0974 0.971 | 0.975 0.970 | 0.974 0.971 | 0.975 0.970
Mixed forest 5 0982 0.979 | 0.983 0979 | 0.982 0979 | 0.983 0.979
Woodland 6 0.982 0.979 | 0.983 0979 | 0.982 0.979 | 0.983 0.979
Wooded grassland 7 0982 0.979 | 0.983 0.979 | 0.982 0.979 | 0.983 0.979
Closed shrubland 8 0982 0979 | 0.983 0979 | 0.982 0979 | 0.983 0.979
Open shrubland 9 0982 0.979 | 0.983 0979 | 0.982 0.979 | 0.983 0.979
Grassland 10 0.982 0.986 | 0.983 0.985 | 0.982 0.986 | 0.983 0.985
Cropland 11 0.982 0.986 | 0.983 0.985 | 0.982 0.986 | 0.983 0.985
Water 0 0991 0.987 | 0.991 0.987 | 0.991 0.987 | 0.991 0.987
Built-up surface 12 0.948 0.953 | 0.948 0.953 | 0.948 0.953 | 0.948 0.953

Figure 3 illustrates LSE estimation, which consists of two
main parts.

The first part describes how static bare soil emissivity is
obtained. After preparing the ASTER GED datasets, global
mean NDVI and channel emissivity maps are obtained and
mean f, is calculated via Eq. (3). In combination with
the LUT for ASTER vegetation emissivity from Meng et
al. (2016), an initial global ASTER bare soil emissivity map
is obtained via Eq. (4). However, due to regions with persis-
tent cloud cover and areas with dense vegetation (i.e., no vis-
ible bare soil fraction), the obtained global emissivity maps
for bare soil still have considerable data gaps. These missing
values in the bare soil emissivity maps are filled with the av-
erage emissivity of the same soil type within 3 x 3 neighbor-
hood pixels. If there is no valid neighbor pixel for averaging,
the neighborhood is enlarged until all data gaps are filled.

The second part describes the estimation of the daily dy-
namic emissivity. Firstly, the global ASTER background bare
soil spectral channel emissivities are converted to AVHRR
spectral channels via Eq. (5). Then, AVHRR channel emis-
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sivities are obtained via Eq. (2) with NDVI values from the
AVHI13Cl1 dataset. Vegetation emissivities are taken from a
look-up table (Table 7), which is based on AVHRR LCTs and
vegetation emissivities from Pinheiro et al. (2006). Further-
more, emissivities of built-up areas and water are used for
separating these areas from other non-vegetated areas.

3.4 Orbital drift correction

The orbital drift of the NOAA-series satellites is a seri-
ous limitation for applications of AVHRR LST. Therefore,
an orbital drift correction (ODC) would be highly useful
and beneficial for many users. The actual overpass times
of the NOAA-series afternoon satellites are between 13:00
and 17:30 ST. In order to include the four afternoon satel-
lites (Table 1), the target time for ODC is set to 14:30 (so-
lar time). According to the ODC method proposed by Liu et
al. (2019a), the LST relationship between overpass time and

Earth Syst. Sci. Data, 12, 3247-3268, 2020
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Table 8. Variables in the LST files.

J. Ma et al.: Long-term land surface temperature product for NOAA AVHRR

LST name Variable Description Unit Data type  Scale  Offset Dimension
LST Land surface temperature K Ulnt16 0.02 — 3600 x 7200
RF-SWA View_time Time of LST observation (UTC) h Ulnt8 0.1 — 3600 x 7200
(instantaneous)  View_angle  View zenith angle degree  Ulnt8 - — 3600 x 7200
LST QA LST quality flag - Ulnt8 - — 3600 x 7200
Latitude Latitude degree  Ulnt8 - - 3600 x 1
Longitude Longitude degree  Ulnt8 - - 7200 x 1
LST Land surface temperature K Ulnt16 0.02 — 3600 x 7200
ODC LST at 14:30 ST
Latitude Latitude degree  Ulnt8 - - 3600 x 1
Longitude Longitude degree  Ulnt8 - - 7200 x 1
LST Land surface temperature averaged K Ulnt16 0.02 — 3600 x 7200
monthly at 14:30 ST
Monthly Count The number of available - Ulnt8 - — 3600 x 7200
averaged LST pixels in a month
Latitude Latitude degree  Ulnt8 - - 3600 x 1
Longitude Longitude degree  Ulnt8 - - 7200 x 1

ODC target time (14:30) can be written as follows:

Ts(t) =

T.(145) + T, {cos (% (- tm)) —cos (g (14.5 — tm)) }
(6)

where ¢ is the time of the day in hours, T} is the diurnal am-
plitude of LST in K, w is the length of daytime, and ¢, is
the time of maximum LST in hours (Gottsche and Olesen,
2001). Here, w is determined by the duration of daytime:

2 05! ( c0s85° _ __ tangtan 8), where ¢ is the latitude

W = 75C08 COSPCOosd
of the pixel in degrees and § is the solar declination. § can
be expressed as a function of the day of the year (DOY):
5 = 23.45sin (% (284 + DOY)) (Elagib et al., 1998).
Similar to the component emissivity in Eq. (2), LST can
be approximated as the weighted sum of the component tem-

peratures of the vegetation and bare soil areas (Quan et al.,
2018):

T~ fvTveg+(1 _fV)TSOilv @)

where Tyep and T are the component temperatures of veg-
etation and bare soil, respectively.

Starting with the approach by Liu et al. (2019a), we further
divide the diurnal temperature amplitude 7, into two compo-
nents (i.e., vegetation and soil). Thus, Eq. (6) can then be
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rewritten as follows:
Ts (t) = fst,veg(14‘5) + (1 - fv) Ts,soil(14~5)
+ (fvTa,veg +=f) Ta,soil)

[cos (g (t— tm)) — cos (g (14.5 — tm)> ] ®)

where T veg(14.5) and T s0i1(14.5) are the component tem-
peratures of vegetation and bare soil at target time 14:30 ST,
respectively, and T veg and T, soj are the components of di-
urnal temperature amplitude T,, respectively.

In Eq. (8), the parameters T, fy, and ¢ are available for
each pixel. To obtain the other five parameters, T yeg(14.5),
Ts,5011(14.5), Ty veg, Tasoil, and ty, it is assumed that the com-
ponent temperatures and the shape of the diurnal temperature
cycle are approximately the same in a 3 x 3 pixel neighbor-
hood. With this assumption, there are nine equations to solve
for the five unknown parameters. To constrain the solution,
boundaries are set for each parameter. The boundaries for
Ts,veg(14.5) and T 5011 (14.5) are [Teenter — 10, Teenter + 151K,
and Teenger 18 the LST for the center pixel in the 3 x 3 neigh-
borhood. The boundaries for T, veg and T soi1 are [5, 40]K
and T, soi1 must be larger than T, ve,. The boundary for #y, is
[12, 15] in hours. In order to obtain more stable parameters,
the pixel’s ODC parameters obtained with an averaged value
from the neighborhood when Eq. (8) cannot be fitted, e.g.,
fv are similar to each other (e.g., fy =0, 1) in the 3 x 3 pixel
neighborhood. If there is no valid neighbor pixel for averag-
ing, the neighborhood area is enlarged from 3 x 3 to 9 x 9.
Once the parameters are determined, the LST at 14:30 ST can
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be calculated via Eq. (9).

T (14.5) = Ty (1) + (fv Tarveg + (1 — /o) Tasoil)
{cos (g(14.5 —tm)) —cos (g (t —tm))} ©)]

3.5 Generation of LST products

The product generation executable (PGE) code includes four
modules. Module I is for generating the multi-LST with the
selected SWAs. Three different types of input data enter this
module: (i) the satellite data, i.e., BTs from AVH02C1, NDVI
from AVHI3Cl, bare soil emissivity (see section 3.3), and
AVHRR LCTs from UMD:; (ii) look-up tables, i.e., coeffi-
cients of the SWAs (see Sect. 3.1) and emissivities of vegeta-
tion, water, and built-up areas (see Table 7); and (iii) ancillary
data, i.e., NSAT and CWVC from MERRA and the land—sea
mask. The QC flags in AVHRO2C1 are also used to identify
cloudy pixels. If a pixel contains cloud or cloud shadow, its
LST is not calculated. Therefore, the output of Module I is
multi-LST under clear sky conditions.

Module II is for integrating the multi-LST with the trained
RF ensemble model. The inputs include the multi-LST from
Module I and the RF ensemble model; the output is the en-
semble LST, which is termed RF-SWA LST. Module 111 is for
normalizing the LST affected by orbital drift to 14:30 ST. In
this module, the input datasets include the RF-SWA LST and
NDVI; the latter is used for calculating the fraction of veg-
etation. The output of Module III is orbital-drift-corrected
LST, which is termed OCD LST. Module 1V is for generat-
ing monthly average LST: the module first groups ODC LST
by month, sums the valid LST in each month up, and then di-
vides them by the respective number of valid LST. The output
from this module is monthly averaged ODC LST. All LST
data are stored in standard HDF-EOS format. Table 8 shows
the variables provided in the three types of LST data files.

3.6 LST product validation based on in situ LST

At the surface, in situ LST can be estimated from measure-
ments of broadband hemispherical upwelling radiance (L)
and atmospheric downwelling radiance (Lq) using Stefan—
Boltzmann’s law:

T, = ‘Vw’ (10)
o

where 7g is in situ LST, broadband emissivity ¢ is ob-
tained from AVHRR LSE in AVHRR LSE for channel
centered at 11 and 12um via the empirical relationship
& =0.2489+0.2386¢11 +0.4998¢1, (Liang, 2005), and o (=
5.67x107 8% W (m2 K*~1) is the Stefan-Boltzmann constant.

Before the validation was performed, in situ LST and
AVHRR LST were accurately matched up in terms of ge-
olocation and acquisition time (nearest-neighbor interpola-
tion and, depending on the site, time differences of less than
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3, 15 or 30min). Furthermore, VZAs were limited to less
than 40°. Additionally, three-sigma (30) filtering (Eq. 11)
was employed to remove the samples contaminated by unde-
tected clouds (Gottsche et al., 2016; Pearson, 2002).

S = 1.4826 x median { ‘xk _ xmed

. an

where xj is the LST differences between the retrieved and in
situ values, and x™9 is the median of the residuals. Matchups
with residuals greater than x™¢ + 3§ or less than x™4 — 3§

are regarded as outliers.

4 Results and discussion

4.1 Training results and selection of SWAs

For NOAA-07/11 AVHRR, the candidate SWAs in Table 5
were already trained and evaluated by Zhou et al. (2019b).
Here, the SWAs are additionally trained and evaluated for
NOAA-09/14 AVHRR. Generally, the SWA training results
for the four sensors are consistent with each other. There-
fore, only the result for NOAA-14 AVHRR is listed here.
The candidate algorithms OV1992, FO1996, and FOW 1996
show the worst regression accuracy regardless of atmo-
spheric conditions, with standard errors of the estimate (SEE)
higher than 1.49, 1.48, and 1.32 K, respectively. For Warm-
ATM, the SEE of PP1991 increases rapidly with increasing
CWVC, while it shows good accuracy for Cold-ATM with
SEE between 0.33 and 0.75 K. The SEE values for UC1985
and MT2002 were larger than those of most other SWAs,
even though they are still lower than for OV1992, FO1996,
FOW1996, and PP1991. Therefore, these six SWAs were dis-
regarded in the further analysis. For the remaining 11 SWAs,
a sensitivity analysis was performed for the TRA-G simula-
tion dataset with uncertainties levels L1 and L2. The results
showed that SO1991 and CO1994 are sensitive to uncertain-
ties in LSE and CWVC. Consequently, these two SWAs were
also excluded from the candidate algorithm list. More details
on the training and sensitivity analysis are provided in Zhou
et al. (2019b).

The nine remaining SWAs for NOAA-09/14 AVHRR were
then tested with the simulation datasets VAL-S and VAL-T.
For completeness, Fig. 4 shows these results together with
those obtained for NOAA-07/11. It can be seen that the re-
tained nine SWAs have low root-mean-square error (RMSE)
values, which range between 0.38 and 0.49 K for VAL-S and
between 0.47 and 0.68 K for VAL-T. Since the atmospheric
profiles used to generate VAL-S and VAL-T are globally dis-
tributed, we conclude that these nine SWAs should perform
well globally. The results for VAL-S in Fig. 4 reveal that
BL-WD and WA2014 show the highest overall accuracy, fol-
lowed by BL1995, PR1984, and VI1991. The RMSE values
of these four SWAs are ~ 0.48 K. For VAL-T, BL1995 and
BL_WD show the highest accuracy, followed by WA2014,
VI1991, and PR1984; in this case, the RMSE of these four
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Figure 4. Performance of the nine selected SWAs for simulation datasets VAL-S and VAL-T.

SWAs is ~0.60K. For all nine SWAs, the accuracy de-
creases as the VZA increases. While BL-WD achieves the
highest accuracy, no obvious differences between the other
eight SWAs are observed. From the 17 LCTs over which the
atmospheric profiles are located, taking VAL-T for NOAA-
14 AVHRR as an example, BL-WD performs best for nine
LCTs, and VI1991 and BL.1995 perform best for three LCTs.
In contrast, there is no LC type over which PR1984, SR2000,
GA2008, and UL1994 perform best. It is because those
SWAs show different sensitivity to the emissivity, which was
set by the LCTs of profiles located. When assessing the effect
of different atmospheric conditions, in Cold-ATM the highest
accuracy is found for BL1995 and BL-WD. In Warm-ATM,
when T,-NSAT is within [—4, 20] K, BL-WD performs the
best for CWVC below 2.5 gcm™2, while PR1984 performs
the best when CWVC exceeds 4.5 gcm™2. When T,-NSAT is
within [—16,4] K, WA2014 shows the best performance for
CWVC below 3.5¢g cm—2. With increasing CWVC, BL1995
and BL-WD show the highest accuracy. Overall, it is found
that no single SWA achieves the highest accuracy under all
conditions.

4.2 Multi-LST ensemble

The nine SWAs were integrated with the RF ensemble
method. For comparison, the simple averaging (SA) method
and Bayesian model averaging (BMA) method were also em-
ployed. In contrast to Zhou et al. (2019b), here we used LST
retrieved with SWAs trained with TRA-G (LO, L1, and L2)
and VAL-S/T (LO) to simulate a more realistic situation with
uncertainty. Generally, the mean bias error (MBE) of the RF
ensemble method and the BMA model method is negligible
(of the order of 10~* K or less), while the MBE of SA method
and single SWA is larger (of the order of 0.1 K). It can be con-
cluded that the two ensemble methods (i.e., RF and BMA)
similarly reduce systematic error. In terms of training accu-
racy, the RF model shows obvious advantages, with a stan-
dard deviation (SD) of less than 0.50 K for the four NOAA
AVHRR sensors, while the SD of SA and BMA is larger and
varies between 1.27 and 1.35 K. Figure 5 highlights the im-
portance of variance for forming the RF ensemble: the most
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Figure 5. Importance of the nine SWAs for the RF ensemble model.

important SWA is BL1995, with an importance value of 0.67,
0.64, 0.68, and 0.83 for NOAA-07, 09, 11, and 14, respec-
tively. The second most important SWA for NOAA-07, 09,
and 11 is ULW1994, while WA2014 is the second most im-
portant SWA for NOAA-14. SR2000 is also of some impor-
tance for the ensemble process. Figure 5 confirms that the
most important SWA, i.e., BL1995, is consistent with the
most accurate SWA under different atmospheric conditions.

Figure 6 shows the SEEs of the three ensemble methods
for different CWVC zones and VZA subranges for NOAA-
14 AVHRR. Compared to the BMA and SA models for all
atmospheric conditions and VZAs, the RF ensemble model
achieves an obvious improvement in LST accuracy. For
Cold-ATM, the SEE of RF increases slowly with increasing
CWVC and VZA and varies from 0.21 to 0.45K. In con-
trast, the SEEs of BMA and SA show larger variations for
both, increasing CWVC and VZA, and range from 0.72 to
1.23K. For Warm-ATM and CWVC less than 3.0 gcm™2,
there is no obvious increase in SEE with increasing CWVC
or VZA. However, SEE increases noticeably with increasing
VZA when CWVC exceeds 3.0 gcm™2, especially at VZA
larger than 35°. However, the SEE of RF is always smaller
than that of BMA and SA: RF SEE only exceeds 1.0 K when
CWVC is larger than 5.0 gcm ™2 and VZA exceeds 60°. Un-
der the same conditions, the SEE of BMA and SA is larger
than 2.0 K. Therefore, it is concluded that the RF ensemble
method achieves a higher training accuracy than the BMA
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Figure 6. SEE values of the three ensemble methods for NOAA-14 AVHRR under different atmospheric and VZA conditions. (a) Cold-ATM
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and SA methods, with a RF training accuracy of less than
1.0 K under most conditions.

To assess the stability and sensitivity of the RF model, the
LST estimated with RF, BMA, and SA methods was eval-
uated against the VAL-T and VAL-S datasets at uncertainty
levels L1 and L2. Figure 7 shows the evaluation of the three
methods for NOAA-14 AVHRR. For VAL-S at L1, SD and
RMSE of about 0.7 K are found for all three methods; how-
ever, the biases of RF (MBE = —0.04 K) and BMA (MBE =
—0.03 K) are smaller than that of SA (MBE = —0.11 K) and
negligible (i.e., less than 0.1 K). For VAL-S at L2, the bias
for all three methods is negligible. However, considerable
improvements are obtained with the RF method in terms of
SD and RMSE, which is about 0.25K lower than for BMA
and SA. For VAL-T at L1, the RF method has a slightly larger
bias (MBE = —0.1 K) than the SA and BMA methods; how-
ever, its SD and RMSE are smaller. For VAL-T at L2, the
three methods have a similar bias. However, RF has a signif-
icantly smaller SD and RMSE of 1.02 and 1.03K than SA
(1.41 and 1.42K) and BMA (1.38 and 1.39 K). Similar re-
sults were found for NOAA-07/09/11 AVHRR.

4.3 Validation of RF-SWA LST against in situ LST

First, the generated RF-SWA LST was validated against in
situ LST from SURFRAD sites. Figure 8 shows a scatter-
plot between RF-SWA LST and SURFRAD in situ LST and

https://doi.org/10.5194/essd-12-3247-2020

some statistical indicators, i.e., MBE, RMSE, SD, R2, and
N (i.e., sample size). High correlations are found between
RF-SWA LST and in situ LST with a R? range of 0.91—
0.96. MBE varies between —1.59 and 2.71 K, and RMSE
varies between 2.25 and 3.86 K. Compared to LST products
for MODIS, AATSR, and VIIRS, which were also validated
against SURFRAD in situ LST (Duan et al., 2019; Liu et al.,
2019b; Martin et al., 2019), RF-SWA LST shows a similar
accuracy and precision. It should be noted that the large MBE
at BND, GWN, and TBL are probably due to a lack of in
situ LST representativeness at the satellite scale, e.g., BND,
a seasonal bias variation is observed. During the dormancy
season, the surface within the ground radiometer’s FOV and
the corresponding AVHRR pixel are both fairly homoge-
neously covered by bare soil and grassland, which leads to
smaller LST differences. In contrast, during the growing sea-
son, most of the area within the AVHRR pixel is covered by
cropland and the fraction of vegetation cover depends on the
crop’s growth stage: especially in the early growing and har-
vesting season, there are many bare areas between crop rows,
which causes larger LST differences. If only BND matchups
during the dormancy season are considered, the correspond-
ing MBE and RMSE between RF-SWA LST and in situ LST
reduce to 1.56 and 2.58 K, respectively. At GWN, the land
cover within the ground radiometer’s FOV is also grassland;
however, the corresponding AVHRR pixel includes several
nearby forest areas. Therefore, the daytime LST observed on

Earth Syst. Sci. Data, 12, 3247-3268, 2020
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Figure 7. LST retrieved with the three ensemble methods for NOAA-14 against true LST. Results are based on simulation datasets VAL-T
and VAL-S with added Gaussian noise (uncertainty levels L1 and L2).

the pixel scale tends to be lower than the in situ LST. At TBL, the simulation datasets in Sect. 4.2. Furthermore, the vali-
RF-SWA LST is lower than in situ LST for in situ LST larger dation results meet WMO’s requirements for applications of
than 300 K: this may be explained by a larger vegetation area LST/LSWT in different fields, e.g., an uncertainty of 2.0K

southeast of the site, which is included in the AVHRR pixel, for agricultural meteorology and of 1.0 K for climate moni-
while the ground radiometer’s entire FOV is covered by bare toring (WMO, 2020).
soil.

Figure 9 shows scatterplots between RF-SWA LST and
NDBC lake surface water temperature (LSWT) and some

statistical indicators for buoys in the eastern Pacific, the The retrieved RE-SWA LST were normalized for the orbital

Great Lakes, the Gulf of Mexico, and the western Atlantic. i of the NOAA-series satellites using the orbital drift cor-
As shown in Table 4, the number of buoys for each area dif- rection method described in Sect. 3.4. Since water surface

fers. The RF 'SYA LST shows a good correlation within situ oy perature varies relatively slowly, only the retrieved sur-
LSWT, with R” ranging from 0.94 to 0.98. The plots also .00 (emperatures over land were normalized. The orbital

show low systematic errors and high precision, e.g., MBEs drift corrected LST (ODC LST) was then validated against
are less than 0.26 K and RMSE ranges from 0.77 to 0.89 K. the same in situ data as in Sect. 4.3. Figure 10 shows a box-

Overall, the validation results resemble those obtained for plot of the residuals (Tavirr — Tin sica) for the ODC LST and

4.4 Orbital drift correction
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Figure 10. Residuals with respect to in situ LST for ODC and RF-
SWA LST for six SURFRAD sites (BND, DRA, FPK, GWN, PSU,
and TBL). Details about the sites are provided in Table 4.
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RF-SWA LST. The plot shows that the bias of the ODC LST
over the six sites is similar to that of the uncorrected RF-
SWA LST. From the six SURFRAD sites, BND has the high-
est positive bias, while GWN and TBL show negative biases.
Following the explanation in Sect. 4.3, this is probably due to
less representative in situ measurements. The standard devi-
ations (SD) of the ODC LST residuals at the six SURFRAD
sites are 3.62 K (BND), 2.34 K (DRA), 3.38 K (FPK), 3.45K
(GWN), 2.57 K (PSU), and 3.69 K (TBL). The SD variations
(ODC LST-RF-SWA LST) range from 0.06 to 1.15 K. This
indicates that the ODC LST maintains the good accuracy of
RF-SWA LST and its performance primarily depends on sur-
face conditions. This is understandable because the improved

Earth Syst. Sci. Data, 12, 3247-3268, 2020
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Figure 11. Monthly averaged ODC LST retrieved from NOAA-14 data for 1999 normalized to 14:30 ST: (a) March, (b) June, (c¢) September,

(d) December.

ODC method uses adjacent pixels to compensate for the lack
of temporal information. Nevertheless, the improved ODC
method provides a practical way to correct the effect of or-
bital drift on LST retrieved from NOAA AVHRR data.

4.5 Global ODC LST product examples

Figure 11 shows monthly averaged ODC LST for March,
June, September, and December 1999 normalized to
14:30 ST. The LST show an obvious annual variation as
seasons change with Earth’s revolution around the Sun. In
March and September (Fig. 11a and c), the Sun is overhead
near the Equator, which then receives most of the solar en-
ergy. However, the highest LST are observed north and south
of the Equator, i.e., over the Sahara and Australia. This is due
to the equatorial regions’ dense coverage with tropical rain-
forests, e.g., in the Amazon and Congo basins. The lowest
LST are observed in the northern hemisphere around 45° N
and around the Tibetan Plateau. In June (Fig. 11b), the Sun
is more overhead in the Northern Hemisphere and the area
with the highest LST is located around 30° N, i.e., over the
Sahara, the Arabian Peninsula, and the Iran—Pamir Plateau.
At the same time, LST also increases north of 45° N. In De-
cember (Fig. 11d), the area with the highest LST is mainly
located over Oceania and parts of South America. It should
be noted that the large areas with invalid data, which are
mainly observed at latitudes larger than 45°, are caused by
the strict cloud filtering algorithms, which frequently recog-
nize snow and ice as cloud, and polar night when no visible

Earth Syst. Sci. Data, 12, 3247-3268, 2020

data are available to calculate NDVI (related to LSE). Fur-
thermore, in June there are many invalid pixels over southern
and southwestern China, an area regularly affected by cloudy
weather.

In order to demonstrate the temporal consistency between
satellites, Fig. 12 shows time series of monthly averaged
ODC LST from 1981 to 2000 for the Amazon basin, the Arc-
tic pole, and the Tibetan Plateau (areas are shown in Fig. 1):
no significant orbital drift or inconsistencies can be seen,
indicating that the ODC method adequately normalized the
retrieved AVHRR LST. The larger annual variations over
the north pole (Fig. 12b) are related to the specific varia-
tion of solar radiation in high-latitude areas, i.e., polar day
and polar night. For the Amazon basin (Fig. 12a), the north
Arctic pole (Fig. 12b), and the Tibetan Plateau (Fig. 12c),
the linear regressions (blue lines) show different trends with
rates of 0.0484+0.024Kyr~! (p value=0.046), 0.087 +
0.221Kyr~! (p value =0.695), and 0.08140.103 K yr~!
(p value = 0.433), respectively. However, these rates may be
affected by averaging over large areas and by the frequently
missing data due to clouds. Therefore, more in-depth analy-
ses, especially with in situ observations and reanalysis data,
are needed (Liu et al., 2008; Rigor et al., 2000; Schneider and
Hook, 2010; Wu et al., 2013).

5 Data availability

Global LST products retrieved from NOAA/AVHRR
data between 1981 to 2000 are freely available at

https://doi.org/10.5194/essd-12-3247-2020
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Figure 12. Monthly averaged ODC LST time series normalized to 14:30 ST for 1981-2000 over the Amazon basin (a), the north pole (b),

and the Tibetan Plateau (c).

https://doi.org/10.5281/zenodo.3934354 for RF-SWA LST
(Ma et al., 2020a); https://doi.org/10.5281/zenod0.3936627
for  ODC LST (Ma et al., 2020c¢); and
https://doi.org/10.5281/zenodo.393664 1 for  monthly
averaged LST (Ma et al.,, 2020b). The dataset is also
available at the National Earth System Science Data Center,
National Science & Technology Infrastructure of China
(http://www.geodata.cn/thematic View/GLASS .html, last
access: 2 December 2020) and the University of Maryland
(http://glass.umd.edu/LST/, last access: 2 December 2020).

The NOAA AVHRR data were downloaded from Level-
1 and Atmosphere Archive & Distribution System Dis-
tributed Active Archive Center (https://ladsweb.modaps.
eosdis.nasa.gov/, last access: 2 December 2020, NASA,
2020). SURFRAD data were downloaded from ftp://aftp.
cmdl.noaa.gov/data/radiation/surfrad/ (last access: 2 De-
cember 2020, NOAA, 2020a). BUOYS data were down-
loaded from the National Data Buoy Center (https://www.
ndbc.noaa.gov/historical_data.shtml, last access: 2 Decem-
ber 2020, NOAA, 2020b).

6 Conclusion and outlook

Three global LST products with a spatial resolution of
0.05° x 0.05° have been generated from historical NOAA-9,
11, and 14 AVHRR data (1981-2000). These LST products
are obtained in four steps: (1) training and evaluation of 17
AVHRR SWAs, (2) integrating nine selected SWAs with the

https://doi.org/10.5194/essd-12-3247-2020

random forest method (RF-SWA), (3) correcting the effect of
orbital drift by normalizing RF-SWA LST to 14:30 ST, and
(4) validating the retrieved LST against in situ LST data.

The 17 trained candidate SWAs generally showed con-
sistent results for the four sensors. The candidate algo-
rithms OV1992, FO1996, FOW 1996, PP1991, UC1985, and
MT2002 had larger SEE than the other SWAs, while SO1991
and CO1994 were sensitive to uncertainties in LSE and
CWVC. Therefore, these SWAs were rejected. The nine
remaining SWAs were evaluated based on the simulation
datasets VAL-S and VAL-T. The results show that the trained
nine SWAs have RMSEs ranging between 0.38 and 0.55K
for VAL-S and between 0.53 and 0.69 K for VAL-T. Since
the atmospheric profiles used to simulate and evaluate were
chosen to be globally representative, we conclude that these
nine SWAs should perform well globally.

The RF ensemble method was then applied to the nine
selected SWAs. Compared to individual SWAs, sample av-
eraging, and the BMA ensemble method, the RF ensemble
method showed the best accuracy when evaluated against the
simulation datasets. The RF ensemble algorithm yielded an
accuracy better than 0.8 K for a maximum LSE uncertainty
of 0.02 and a maximum CWVC uncertainty of 1.0 gcm™2;
the accuracy was still better than 1.10 K when the maximum
LSE uncertainty increased to 0.04. Based on these results, the
algorithm theoretically satisfies the target accuracy require-
ment of WMO, i.e., an accuracy better than 1.0 K at a spatial
resolution of 5 km. Furthermore, it is concluded that the RF
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method outperforms the SA and BMA methods and has the
greatest potential for improving LST retrieval accuracy.

The RF-SWA LST and ODC LST are validated against in
situ LST from SURFRAD sites and NDBC buoys. Against
SURFRAD LST, the MBE of RF-SWA LST varies from
—1.59 to 2.71 K and its SD varies from 2.26 to 2.76 K,
which is similar to LST products retrieved from other sen-
sors, e.g., MODIS. Against NDBC data from 1981 to 2000,
RF-SWA LST also shows good accuracy and precision: with
its small MBE (less than 0.10 K) and a SD ranging from 0.84
to 1.05 K, its performance against in situ water temperature
is similar to that for the simulated datasets. When validated
against the same SURFRAD LST, the MBE of ODC LST
ranges from —1.05 to 3.01 K, which is similar to the MBE
obtained for RF-SWA LSTi; its SD increases and ranges from
2.34 to 3.69 K. Overall, it is concluded that both RF-SWA
LST and ODC LST achieve similar accuracy.

The generated global AVHRR LST is well suited to meet
the needs of many applications and studies, e.g., understand-
ing global climate change, radiation budgeting, energy bal-
ancing, and mapping of land cover change. However, further
research should address the following points: first, the devel-
oped LST products were validated against in situ LST data
from North America, while they need to be validated glob-
ally, e.g., against AsiaFlux measurements, historical air tem-
perature, reanalysis data, etc. Second, ODC LST is obtained
at a single overpass time, which required using prior knowl-
edge on temporal parameters. If additional information on
LST would be available, e.g., from modeling datasets, geo-
stationary satellite datasets, and AVHRR nighttime datasets,
it could improve future research. Third, over some areas,
there are many invalid values, e.g., southwestern China,
which frequently experiences cloudy and rainy weather. It
is expected that future work can utilize recent progress in
generating global all-weather LST products (Martins et al.,
2019; Zhang et al., 2020) to help integrate multi-source data,
e.g., passive microwave brightness temperature and reanaly-
sis data.
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