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A B S T R A C T   

Surface longwave radiation (SLWR) components, including downward longwave radiation (DLR), upward 
longwave radiation (ULR), and net longwave radiation (NLR), are major contributors to the Earth’s surface 
radiation budget and play important roles in ecological, hydrological, and atmospheric processes. Previous SLWR 
products have different drawbacks, such as being temporally short (after 2000), spatially coarse (≥ 25 km), and 
instantaneous values, which hinder their in-depth applications in land surface process modeling and climate 
trends analysis. Here, we reported the Advanced Very High-Resolution Radiometer (AVHRR)-based Global LAnd 
Surface Satellites (GLASS-AVHRR) SLWR products over the global land surface at a 5 km spatial resolution and 1 
day temporal resolution between 1981 and 2018. These products were generated using multiple densely con-
nected convolutional neural networks (DesCNNs) from the AVHRR top-of-atmosphere (TOA) reflected and 
emitted observations and European Centre for Medium-Range Weather Forecasts (ECMWF) fifth generation 
reanalysis (ERA5) near-surface meteorological data. DesCNNs were trained using integrated SLWR samples 
derived from the Moderate Resolution Imaging Spectroradiometer (MODIS)-based GLASS, Clouds and the Earth’s 
Radiant Energy System Synoptic (CERES-SYN), and ERA5 SLWR products. In situ measurements from 231 
globally distributed sites were used to evaluate the GLASS-AVHRR SLWR estimates. The results illustrated the 
overall high accuracies of GLASS-AVHRR SLWR products with root-mean-square-errors (RMSEs) of 18.66, 14.92, 
and 16.29 Wm− 2, and mean bias errors (MBEs) of − 2.69, − 3.77, and 0.49 Wm− 2 for all-sky DLR, ULR, and NLR, 
respectively. We found good correlation and consistency between GLASS-AVHRR and both CERES-SYN and 
ERA5 in terms of spatial patterns, latitudinal gradient, and temporal evolution. Our results revealed the sig-
nificant contribution of shortwave observations to SLWR estimation owing to the high amounts of clouds over 
polar regions and water vapor and clouds in tropical areas, which was not previously widely recognized by the 
remote sensing community. GLASS-AVHRR SLWR products were updated, documented, and made available to 
the public at www.glass.umd.edu and www.geodata.cn.   

1. Introduction 

Surface longwave radiation (SLWR) in the thermal-infrared range 
(4–100 μm) is an important component of the surface radiation budget 
at the surface-atmosphere interface and determines the thermal condi-
tions of the land, oceans, and atmosphere (Trigo et al., 2010; Liang et al., 
2019; Liang et al., 2010). SLWR is valuable for both scientific and in-
dustrial applications related to agriculture, land surface modeling, and 
climate monitoring. Three specific longwave radiation components 

constitute SLWR, i.e., downward longwave radiation (DLR)—emitted 
from the atmosphere to the surface—upward longwave radiation (ULR) 
—representing the capability of the thermal radiation from the Earth’s 
surface—and net longwave radiation (NLR), which is the difference 
between DLR and ULR. As important input parameters for land surface 
processing models, accurate SLWR estimates are urgently needed in the 
meteorological, hydrological, and agricultural communities (Wang 
et al., 2017; Wang and Liang, 2009a; Zhou et al., 2007; Ruckstuhl et al., 
2007). For instance, SLWR estimates of <20 and 10 Wm− 2 at 
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instantaneous and monthly time scales, respectively, are acceptable 
uncertainty levels for meteorological applications (Ellingson, 1995; 
Gupta et al., 2004; Schmetz, 1989a); however, most currently available 
SLWR products cannot meet this need (Gui et al., 2010; Zeng et al., 
2020; Tang et al., 2021). Moreover, as effective diagnostic parameters 
for climate change, a long-term, high-resolution, and spatially contin-
uous SLWR dataset is indispensable for accurate characterization and 
quantification of spatiotemporal variation in the surface radiation 
budget at the global scale (Wei et al., 2021; Frederick and Tinsley, 2018; 
Yeo et al., 2018; Dewitte and Clerbaux, 2018; Koll and Cronin, 2018; 
Kofroňová et al., 2019). 

Spatiotemporally continuous SLWR estimates are generally available 
from numerical modeling (e.g., atmospheric reanalysis) and satellite- 
derived products. The most attractive advantages of numerical 
modeling are spatially continuous distribution and long period, which 
facilitate climate trends analysis (Jia et al., 2020; Gao et al., 2020; Liu 
et al., 2021). However, the large uncertainty and spread and coarse 
spatial resolution (> 0.5◦) hinder their in-depth application in spatio-
temporal variations at a regional scale (Wang and Dickinson, 2013; Wild 
et al., 2001; Lindsay et al., 2014; Newman et al., 2000). 

Satellite observations offer an affordable alternative for estimating 
SLWR with sufficient spatial and temporal sampling resolutions. Similar 
to numerical modeling, satellite-derived SLWR estimates retain good 
spatiotemporal continuity but with generally lower uncertainty and 
finer spatial resolution (Gui et al., 2010; Tang et al., 2021; Zeng et al., 
2020). Many regional- and global-scale algorithms have been developed 
from polar-orbiting satellites (e.g., Moderate Resolution Imaging Spec-
troradiometer, MODIS (Wang and Liang, 2009; Wang et al., 2009; Cheng 
et al., 2017)), and geostationary satellites (e.g., the Geostationary 
Operational Environmental Satellites, GOES (Wang and Liang, 2010; 
Qin et al., 2021; Zhu et al., 2021)). Satellite-derived SLWR products 
include the Clouds and the Earth’s Radiant Energy System Synoptic 1◦ ×

1◦ (CERES-SYN (Rutan et al., 2015b)), Global Energy and Water Cycle 
Experiment-Surface Radiation Budget (GEWEX-SRB (Gupta et al., 2008; 
Stackhouse Jr et al., 2000)), and International Satellite Cloud Clima-
tology Project-Flux Data (ISCCP-FD (Zhang et al., 2004)). Additionally, 
the Global LAnd Surface Satellite products suite (Liang et al., 2021b) 
provides MODIS-based instantaneous SLWR values at 1 km spatial res-
olution (GLASS-MODIS (Cheng et al., 2017; Cheng and Liang, 2016)). 

Multiple studies have been conducted to evaluate SLWR estimates 
from these satellite-derived products and atmospheric reanalysis (Zeng 
et al., 2020; Tang et al., 2021; Gui et al., 2010; Wang et al., 2021b). Gui 
et al. (2010) evaluated three SLWR products and found that the CERES 
SLWR components had higher accuracy than the GEWEX-SRB and 
ISCCP-FD products, with standard derivation of differences of 21.8 and 
21.9 Wm− 2 for DLR and ULR, respectively. Tang et al. (2021) showed 
that the European Centre for Medium-Range Weather Forecasts 
(ECMWF) fifth generation reanalysis (ERA5) DLR retrievals had a root- 
mean-square-error (RMSE) of 21.9 Wm− 2 over land, which was better 
than that of CERES-SYN (RMSE of 26.0 Wm− 2); however, ERA5 DLR 
retrievals performed slightly worse than CERES-SYN over oceans. 
Additionally, Wang et al. (2021b) compared seven SLWR datasets at the 
three poles, including two satellite-based products (CERES-SYN, APP-x) 
and five atmospheric reanalysis products (ERA5, MERRA-2, CFSR, JRA- 
55, and GLADS). The evaluation results demonstrated that ERA5 and 
CERES-SYN DLR had better accuracies, both yielding mean bias errors 
(MBEs) and RMSEs of <7 and 25 Wm− 2, respectively. Generally, CERES- 
SYN and ERA5 provide better SLWR estimates at a global scale than 
other atmospheric reanalysis and satellite-derived products. However, 
the short period (after 2000) and coarse spatial resolution (1◦) limit the 
application of CERES-SYN in climate trends analysis. Additionally, the 
coarse spatial resolution (0.25◦) of ERA5 implies insufficient spatial 
variation of the SLWR at a regional scale when applied in meteorolog-
ical, hydrological, and agricultural research. Therefore, a long-term, 
spatiotemporally continuous, high-resolution SLWR dataset is still 
needed for the current global climate trends analysis and regional 

hydrological and agricultural applications. 
The Advanced Very High-Resolution Radiometer (AVHRR) sensor 

has collected space observations at ~1.1 km nadir spatial resolution 
almost continuously since 1981 based on multiple National Oceanic and 
Atmospheric Administration satellite platforms; the data provide an 
opportunity to explicitly replicate the long-term spatiotemporal varia-
tion of global SLWR (Chen et al., 2018; Casey et al., 2010). Much effort 
has been made to retrieve long-term SLWR records from AVHRR data in 
the past decade. The CMSAF Cloud, Albedo, and Surface Radiation 
dataset from AVHRR data (CLARA-A2) have provided monthly DLR on a 
0.25◦ grid system for 34 years (Karlsson et al., 2013; Karlsson et al., 
2017). However, large uncertainty in the CLARA-A2 DLR retrievals 
arises owing to the cloud fraction to a simple weighted average of clear- 
sky ERA-Interim values (Urraca et al., 2017). Moreover, no data are 
available over snow-covered surfaces owing to reduced data quality. The 
long-term spatiotemporal distribution of surface SLWR is alternatively 
available from the Cloud_cci AVHRR post meridiem (AVHRR-PM) 
dataset (Stengel et al., 2020), which was generated using the atmo-
spheric radiative transfer (Fu and Liou, 1992). The AHVRR-PM dataset 
provides instantaneous SLWR retrievals at a 0.05◦ spatial resolution; 
however, the product cannot solve the diurnal variation of SLWR, which 
is one of the implementation requirements documented by the Global 
Observing System for Climate (GCOS; https://gcos.wmo.int/en/gcos- 
implementation-plan). Consequently, we aimed to generate a long- 
term (1981–present), high-resolution (5 km), spatiotemporally contin-
uous daily mean SLWR dataset from AVHRR observations to support 
climate modeling and meteorological applications. 

Algorithms for estimating SLWR from satellite observations have 
been continuously developed in the past three decades and can be 
roughly categorized into three groups, i.e., physical, parameterized, and 
hybrid methods (Jiao and Mu, 2022). Physical methods use a radiative- 
transfer model (RTM) driven by satellite-derived atmospheric profiles to 
calculate SLWR (Viúdez-Mora et al., 2009). However, inefficient 
computation of RTM and unavailability of specific atmospheric profiles 
result in the unrealistic application of physical methods at a large spatial 
scale. Parameterized methods require some readily available near- 
surface meteorological data (e.g., temperature and humidity) based on 
Stefan–Boltzmann’s law (Liu et al., 2020; Niemelä et al., 2001). 
Parameterized methods are simple and computationally efficient but 
ancillary atmospheric parameters with high accuracy are not readily 
obtained globally (Cheng et al., 2019; Guo et al., 2019). Additionally, 
the global usage of parameterized methods is restricted because co-
efficients in most parameterized formulas were developed at a regional 
scale (Niemelä et al., 2001; Zhu et al., 2017). Hybrid methods suit global 
implementation because SLWR is directly derived from satellite TOA 
radiance based on extensive radiative-transfer simulation, which uses an 
off-line look-up-table or a regression model (Cheng et al., 2017; Wang 
et al., 2009; Wang et al., 2017; Tang and Li, 2008). However, hybrid 
methods are ineffective under cloudy-sky conditions because the satel-
lite observations cannot provide the thermal contribution of clouds and 
the atmosphere below clouds (Wang et al., 2018; Yang and Cheng, 
2020). 

Machine learning (ML) is a powerful alternative for accurately 
retrieving global all-sky SLWR owing to its data-mining skills, strong 
adaptability, high nonlinearity, insensitivity to systematical biases of 
satellite observations, and high operating efficiency (Hao et al., 2019). 
ML methods have been successfully used to estimate SLWR in recent 
studies, such as the gradient boosting regression tree method (Wei et al., 
2021), random forest (RF) method (Zhou et al., 2019), and artificial 
neural network model (Wang et al., 2012; Gharekhan et al., 2021). In 
recent years, deep learning exerted a stronger advantage in the field of 
environmental remote sensing compared with traditional ML methods 
(Yuan et al., 2020), benefiting from multi-layer architecture, big data, 
improved activation functions, and great power of hardware (Lecun 
et al., 2015; Shrestha and Mahmood, 2019). Bilgiç and Mert (2021) 
compared the performances of different methods in DLR estimation and 
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concluded that the deep neural network (DNN) outperformed other 
models. Zhu et al. (2021) used a novel DNN architecture to estimate DLR 
based on Himawari-8 brightness temperature (BT) on the Tibetan 
Plateau (TP) and showed better performance of the DNN compared with 
the RF and multi-layer perceptron (MLP). These studies revealed a great 
potential of DNNs with respect to estimating SLWR over regions with 
complex terrain and climatic conditions. However, except for the TP, 
more evaluations are needed to prove the ability of DNN in providing 
accurate estimates, flexible adjustment, and strong generalization under 
different surface and meteorological conditions, especially in polar re-
gions with high cloud cover and low air temperature (Ta) at screen level 
(Zhang et al., 2008; Goosse et al., 2018). 

The objective of this study was to develop an efficient and robust 
algorithm to estimate global, all-sky, spatiotemporally continuous daily 
mean SLWR (including DLR, ULR, and NLR) at a 0.05◦ resolution from 
AVHRR TOA observations and ERA5 near-surface meteorological vari-
ables. We aimed to (1) develop multiple densely connected convolu-
tional neural network (DesCNN) models to estimate accurate all-sky 
SLWR over the globe. To avoid upscaling error of in situ measurements 
within an AVHRR footprint, the DesCNN models were trained using an 
integrated SLWR sample obtained from multiple SLWR products (Xiao 
et al., 2014; Jia et al., 2019; Baret et al., 2013; Wang et al., 2021a; Shang 
et al., 2021). It is difficult to retrieve global SLWR accurately under all 
conditions based only on a global DesCNN model owing to physical 
intrinsic limitations (Cheng et al., 2017) and the significantly non- 
uniform sample distribution (Guo et al., 2022). Transfer learning was 
used to further improve SLWR using limited samples at specific condi-
tions (Yu et al., 2021; Li et al., 2022). (2) Utilize the DesCNN models to 
generate long-term, global SLWR datasets from the AVHRR TOA ob-
servations and ERA5 meteorological data. The generated daily mean 
SLWR dataset was evaluated using in situ measurements from different 
observational networks, such as the Surface Radiation Budget Network 
(SURFRAD (Augustine et al., 2000)), Baseline Surface Radiation 

Network (BSRN (Ohmura et al., 1998)), and FLUXNET (Wilson et al., 
2002). An inter-comparison was conducted between AVHRR-based and 
three other SLWR products (CERES-SYN, GLASS-MODIS, and ERA5) 
under different surface and atmospheric conditions. The spatiotemporal 
consistency of AVHRR-based global SLWR was investigated using the 
CERES-SYN and ERA5 products. (3) Discuss the impact of each predictor 
in all-sky SLWR estimation, the contribution of TOA shortwave reflec-
tance to DLR retrievals, the advantage of DesCNN models, and the idea 
of using instantaneous satellite observations to directly retrieve daily 
SLWR. Hereafter, our estimates derived from AVHRR and ERA5 data are 
named GLASS-AVHRR. To the best of our knowledge, this is the first 
study to use DesCNN models to estimate global SLWR from AVHRR 
observations. The rest of the study is organized in the following manner: 
Section 2 describes the data used in this study; Section 3 introduces the 
methods developed for estimating spatiotemporally continuous SLWR 
values; Section 4 presents the results; Section 5 depicts the contribution 
from AVHRR TOA reflectance; Section 6 provides a discussion; finally, 
Section 7 presents the conclusions. 

2. Data 

2.1. In situ observations 

Ground-based SLWR observations from 2002 to 2018 were collected 
at 231 globally distributed sites (Fig. 1) to evaluate the capability of the 
DesCNN for estimating global SLWR: 24 sites belonged to the BSRN 
project (Ohmura et al., 1998; Wang and Dickinson, 2013), which uses 
Eppley Precision Infrared Radiometers and Kipp & Zonen CG 4 pyrom-
eters to measure SLWR with an uncertainty of ±6% or 15 Wm− 2 at the 
95% confidence level (Wang and Dickinson, 2013). Seven sites belonged 
to Surface Radiation Budget Network (SURFRAD (Augustine et al., 
2000)) and adopted the measurement standards of the BSRN project. 
The largest uncertainty for surface radiation measurements is ~2% for 

Fig. 1. Spatial distribution of global ground SLWR measuring stations. The base map is land cover according to the International Geosphere-Biosphere Pro-
gramme (IGBP). 
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pyrheliometers and ~ 5% for pyranometers (i.e., 15 Wm− 2). Twenty-six 
sites belonged to PROMICE, which monitors the Greenland ice sheet 
(Van As et al., 2011). The SLWR measurements were obtained using 
Kipp & Zonen CNR1 and CNR4 instruments with an expected accuracy 
of ±10% for daily totals (Fausto et al., 2021). Moreover, 129 sites 
belonged to FLUXNET (Wilson et al., 2002) and 29 to AsiaFlux (Yama-
moto et al., 2005), for which longwave observations are measured using 
the Kipp & Zonen net radiometers (CNR1 or CNR1-lite) with uncertainty 
for CNR1 (or CNR1-lite) of ~10% at 95% confidence level for daily to-
tals. Finally, 16 stations on the Antarctic peninsula belonged to the 
Institute for Marine and Atmospheric Research (IMAU (Kuipers Mun-
neke et al., 2012)). These stations are equipped with Kipp & Zonen 
(K&Z) CNR1 net radiometers with factory-provided accuracy of the K&Z 
CG3 for daily SLWR totals of ±10% (Van Den Broeke et al., 2004). The 
land cover types of the above-collected sites include forests, croplands, 
grasslands, wetlands, shrublands, ice/snow, and barren land. The ele-
vations of the sites vary from 2 to 3400 m. The latitudes of the sites range 
from the Equator to 90◦ and include different climate zones (i.e., trop-
ical, dry, temperature, continental, polar, and alpine). Detailed infor-
mation on every site is summarized in Table S1. 

As in situ observations have different temporal resolutions, units, 
and storage forms, a strict data quality control was used to calculate 
daily mean values. For the networks officially providing daily SLWR 
observations, we directly used the observations by referencing the 
quality label (e.g., FLUXNET). For in situ measurements with a sub-daily 
sampling frequency (e.g., BSRN, SURFRAD), we adopted four steps for 
calculating daily mean SLWR measurements on a site-by-site basis, i.e., 
(1) checking and removing raw data records labeled with a bad quality 
flag; (2) calculating hourly mean values only if ≥ 90% of measurements 
were available during the hour; (3) calculating daily mean values only if 
24 values were all available during a 24-h cycle; (4) checking temporal 
continuity and removing some unreasonable daily values by visual in-
spection and 3-σ rules. The NLR observations were calculated as the 
difference between the DLR and ULR components. These processing 
steps have been successfully applied in previous studies (Jia et al., 2018; 
Jiang et al., 2018; Chen et al., 2020) and ensure obtaining in situ 
measurements with good quality. 

2.2. Satellite data products 

2.2.1. AVH02C1 
The AVHRR TOA observations (AVH02C1), including reflectance in 

the red (0.58–0.68 μm) and near-infrared (0.725–1.10 μm) regions and 
BT in the mid-infrared (3.55–3.93 μm) and two thermal-infrared 
(10.5–11.3 and 11.5–12.5 μm) spectral channels, were obtained from 
Version 5 of the land Long-Term Data Record (LTDR (Pedelty et al., 
2007)). Using the best available data, the LTDR project generated a 
consistent AVHRR dataset that relies on eight AVHRR missions. The 
dataset includes observations from 1981 to the present and has a 0.05◦

× 0.05◦ spatial resolution and daily temporal resolution. To address the 
lack of onboard calibration for AVHRR visible to middle infrared bands, 
the LTDR applied a cross-calibration approach that relied on Terra 
MODIS data to fully characterize a stable invariant target for the cross- 
calibration of the AVHRR reflectance bands (Vermote and Saleous, 
2006). The calibration accuracy was within 1% of MODIS data. Besides, 
a lock correction approach was proposed to mitigate the geolocation 
offset (Evans et al., 2010), which showed that the bias of the geolocation 
of AVHRR products was within two pixels. The quality of the AVHRR 
cloud mask also improved significantly and agreed with MODIS Aqua 
>90% (Franch et al., 2017). All of these improvements to the AVH02C1 
facilitate the high accuracy and reasonable spatiotemporal variation of 
the long-term GLASS-AVHRR SLWR dataset. 

2.2.2. CERES-SYN 
CERES instruments on board the Terra, Aqua, and Suomi–National 

Polar-Orbiting Partnership satellites measure shortwave reflected 

radiation (0.3–5 μm), Earth-emitted thermal radiation (8–12 μm), and 
all wavelengths of radiation (0.3–200 μm), with 20-km spatial resolution 
at nadir (Wielicki et al., 1998). These CERES measurements are avail-
able at local equator crossing times of 10:30, 13:30, and 13:30 local time 
(LT), respectively. The CERES footprint radiance was convent instan-
taneous fluxes calculated using scene-dependent angular directional 
models (ADM) based on MODIS cloud retrievals (Loeb et al., 2003). 

To estimate daily SLWR, two methods were adopted by the CERES 
project to account for diurnal fluctuations in longwave radiation be-
tween CERES measurements. The first method was a constant meteo-
rology approach that assumes the cloud conditions at the time of 
satellite observation represent the conditions throughout the day 
(Doelling et al., 2013). The second incorporated contiguous geosta-
tionary satellite (GEO) imager-derived broadband fluxes to account for 
the diurnal variations of SLWR fluxes with a finer temporal resolution 
(Doelling et al., 2016), which has been adopted for the CERES-SYN 
product. CERES-SYN also includes in-atmosphere and surface fluxes 
using the Langley Fu-Liou RTM driven by CERES cloud profiles (Rutan 
et al., 2015a). Currently, CERES-SYN SLWR products are considered to 
be among the best surface flux products available (Gui et al., 2010; Tang 
et al., 2021; Dos Santos Nascimento et al., 2019). 

2.2.3. GLASS-MODIS 
GLASS-MODIS SLWR products, as part of the GLASS products suite 

(Liang et al., 2021a), include global instantaneous all-sky DLR, ULR, and 
NLR estimates at 1 km spatial resolution. Specifically, clear-sky ULR 
values were calculated using the general framework of the hybrid 
method to establish the linear and nonlinear relationships between 
clear-sky ULR and MODIS TOA radiances at three infrared channels (29, 
31, and 32 (Cheng and Liang, 2016)). The cloudy-sky ULR was retrieved 
from the MODIS land surface temperature (MOD/Y06) and the GLASS 
broadband emissivity (Cheng et al., 2015) using Stefan–Boltzmann’s 
law. For the clear-sky DLR product, a bulk formula (Guo et al., 2019) 
was used with the inputs of MODIS TOA radiance in channel 29, GLASS- 
MODIS clear-sky ULR, and MODIS water vapor (Cheng et al., 2017). A 
single-layer cloud model was subsequently applied to estimate cloudy- 
sky DLR values (Forman and Margulis, 2007). The daily SLWR was 
additionally calculated using a linear sine interpolation method from the 
GLASS-MODIS instantaneous SLWR products (Zeng and Cheng, 2021). A 
comprehensive assessment indicated the GLASS-MODIS instantaneous 
SLWR has comparable accuracy to existing SLWR products (Zeng et al., 
2020). 

2.3. ERA5 

Benefiting from developments in model physics, core dynamics, and 
data assimilation, ERA5 was produced in 2016 based on the Integrated 
Forecasting System (IFS) Cy41r2 with an enhanced horizontal resolution 
of 25 km and temporal resolution of 1 h compared with the previous 
ERA-Interim product (Hersbach et al., 2020). The ERA5 reanalysis 
product provides several types of data; for example, atmospheric 

Table 1 
List of satellite-based and atmospheric reanalysis products used in this study.  

Product 
name 

Parameter Spatial 
resolution 

Temporal 
resolution 

Download link 

CERES- 
SYN 

DLR, ULR, NLR 1◦ × 1◦ Hourly https://ceres. 
larc.nasa.gov/ 

GLASS- 
MODIS 

DLR, ULR, NLR 1 km Instantaneous/ 
daily 

http://www. 
glass.umd.edu/ 

ERA5 DLR, ULR, NLR, 
Ta, CWV, RH 

0.25◦ ×

0.25◦

Hourly https://www. 
ecmwf.int/ 

AVH02C1 Reflectance, 
BT, SZA, VZA, 
RAA 

0.05◦ ×

0.05◦

Daily https://la 
dsweb.modaps. 
eosdis.nasa. 
gov/  
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parameters at different pressure levels and surface single-level data. 
Several studies have evaluated the ERA5 SLWR data using regional or 
global in situ measurements (Letu et al., 2021; Zhu et al., 2021). The 
evaluations found the ERA5 SLWR, especially DLR, has high accuracy 
and outperforms CERES on average for hourly to monthly time scales 
over land (Tang et al., 2021). A summary of these products and their 
attributes is presented in Table 1. 

3. Methods 

The entire flow that uses DesCNN models to generate the spatio-
temporally continuous GLASS-AVHRR SLWR products is shown in 
Fig. 2. The process roughly consists of three steps, i.e., integration of 
three SLWR products (Step-I), development and validation of the 
DesCNN models (Step-II), and production and evaluation of GLASS- 
AVHRR SLWR products (Step-III). Specifically, the CERES-SYN, ERA5, 
and GLASS-MODIS SLWR components were first resampled to 5 km 
resolution using the bilinear interpolation and area-weighting averaging 
methods, and the uncertainties of the three SLWR products were sub-
sequently quantified using in situ measurements. Then the integrated 
SLWR sample between 2002 and 2018 was generated using the RF 

model over the globally distributed sites. 
The integrated SLWR sample dataset was matched with AVHRR TOA 

observations [i.e., reflectance, BT, sun-viewing geometry (SZA, VZA, 
RAA)] and ERA5 meteorological parameters [including Ta, CWV, near- 
surface relative humidity (RH; 1000 hPa)], both spatially and tempo-
rally, to generate the training sample dataset for the DesCNN models. 
The training sample dataset was divided into two subsets, including a 
training and validation subset with a period from 2002 to 2015 and an 
independent test subset from 2016 to 2018. Three DesCNN models were 
developed based on the training and validation dataset using the 10-fold 
cross-validation method. Specifically, the DesCNN-I was used to retrieve 
SLWR estimates when the AVHRR TOA observations and ERA5 meteo-
rological variables were all available. The DesCNN-II as a backup model 
for DesCNN-I was used to estimate SLWR values only using ERA5 
meteorological variables to improve the spatial coverage of the GLASS- 
AVHRR products, especially before 2000. Additionally, the DesCNN-III 
as a supplementary model for DesCNN-I was developed using transfer 
learning, which was aimed to fine-tune the SLWR estimates when Ta <

230 K. 
After determining the DesCNN models, the GLASS-AVHRR SLWR 

products were produced and archived using the DesCNN models. The 

Fig. 2. Flowchart of the GLASS-AVHRR SLWR dataset generation using DesCNN models. The entire process consists of the generation of an integrated SLWR sample, 
the development and validation of the DesCNN models, and the production and evaluation of the GLASS-AVHRR SLWR products. 
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GLASS-AVHRR SLWR products were then comprehensively evaluated 
using in situ measurements and the other three SLWR products (i.e., 
CERES-SYN, ERA5, and GLASS-MODIS). The evaluation mainly included 
three parts, i.e., direct validation of GLASS-AVHRR products against the 
in situ measurements, inter-comparison of SLWR estimates under 
different surface and meteorological conditions, and the spatiotemporal 
consistency analysis of the four SLWR products. A detailed description of 
each step is given below. 

3.1. SLWR product integration 

Determining high-quality samples for training the DesCNN models 
and validating the GLASS-AVHRR SLWR retrievals is a critical step. 
Currently, no algorithm and product can provide good SLWR estimates 
under all conditions (Jiao and Mu, 2022; Wang et al., 2021b). Several 
studies have shown that integrated retrievals generally have better ac-
curacy and reliability based on some integration frameworks (Liang 
et al., 2018), such as Bayesian model averaging (BMA (Cheng et al., 
2019)), multiresolution tree (MRT (He et al., 2013)), RF (Ma et al., 
2020), and MLP (Wang et al., 2021a). To avoid increasing the uncer-
tainty caused by the spatial representativeness error of in situ mea-
surements within 5 km, the integrated sample dataset was treated as the 
‘real’ values of SLWR to develop the DesCNN models. 

CERES-SYN and ERA5 generally exhibit lower uncertainty in SLWR 
compared with other satellite-derived products and atmospheric rean-
alysis (Wang et al., 2021b; Wang and Dickinson, 2013; Tang et al., 2021; 
Gui et al., 2010). Additionally, GLASS-MODIS instantaneous SLWR 
products also show acceptable global accuracies with RMSEs of 18.15, 
26.94, and 26.70 Wm− 2 for clear-sky ULR, DLR, and NLR, respectively 
(Zeng et al., 2020). A multi-SLWR ensemble method based on the RF 
model was used to obtain more accurate and stable SLWR values by 
integrating CERES-SYN, ERA5, and GLASS-MODIS SLWR products at 5 
km resolution. ERA5 meteorological variables (i.e., Ta, CWV, RH) were 
also fed into the RF model to enable the model to automatically deter-
mine the combination of SLWR retrievals most suited for specific sce-
narios (Wang et al., 2021a). 

The prepared RF sample dataset was divided into two parts, i.e., a 

random 80% selection was used as a training dataset for driving the RF 
model and the remaining 20% served as the validation dataset to fine- 
tune the RF model. After determining the optimal model parameters, 
the trained RF model was used to generate the integrated SLWR sample 
dataset. The integrated SLWR dataset was subsequently used as the 
training sample to develop the DesCNN models. The uncertainties of the 
three original products and the RF-based integrated SLWR dataset are 
presented in Section 4.1. 

3.2. DesCNNs development 

3.2.1. End-to-end framework 
Inspired by the superiority of densely connected neural networks 

(DenseNet) in four state-of-the-art DNN architectures (Huang et al., 
2021; Zhu et al., 2021) (i.e., VGG (Sengupta et al., 2019), ResNet (He 
et al., 2016), Xception (Chollet, 2017), and DenseNet (Iandola et al., 
2014)), the architecture of DenseNet was adopted to build the DesCNN 
models (Fig. 3) and then estimated the GLASS-AVHRR SLWR. Generally, 
the compelling advantages of DenseNet include alleviating the vanish-
ing gradient problem, strengthening feature propagation, encouraging 
feature reuse, and reducing the number of parameters, all of which 
ensure comprehensive and deep training based on the integrated 
sample. 

In a standard convolutional neural network (CNN) comprising L 
layers, the lth layer normally reads the state from its preceding l-1th layer 
based on the nonlinear transformation Hl(⋅), i.e., xl = Hl(xl-1), and then 
writes to the following l + 1th layer. However, edge information in the 
feature maps is inevitably lost as the network becomes increasingly 
deep. To further improve information preservation and flow, the Den-
seNet structure was proposed (Fig. 3, left-panel). The lth layer receives 
the feature maps from all of the preceding layers, x0, x1, x2, …., xl-1, as 
inputs: xl = Hl([x0, x1, x2, …., xl-1]), and then passes them on to all 
subsequent L-l layers (Huang et al., 2017). DenseNet requires fewer 
parameters than the standard CNN as there is no need to relearn 
redundant feature maps. Three dense blocks (C2, C4, and C6) were 
sequentially stacked to build the backbone of the DesCNN architecture. 

DenseNet can use very narrow layers (i.e., a small number of feature 

Fig. 3. End-to-end framework to derive mapping between AVHRR remote sensing images and SLWR samples. Inputs include AVHRR TOA observations, sun-viewing 
geometry, and ERA5 meteorological parameters. C1 ~ C6 are convolutional layers for performing feature engineering. F7 ~ F10 are fully connected layers that fit 
extracted feature maps to the integrated SLWR. The left panel shows the graphic structure of the densely connected layer. 
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maps) to achieve favorable results because each layer in the network has 
received all preceding feature maps in the dense block. Therefore, the 
growth rate (i.e., the number of feature maps produced by Hl) was set to 
32 in the DesCNN model. According to previous studies (He et al., 2016; 
Szegedy et al., 2016), a bottleneck layer composed of a 1 × 1 convolu-
tional layer was used before a 3 × 3 convolutional layer to reduce the 
number of feature maps and improve the computational efficiency. A 
bottleneck layer was added behind each of the two dense blocks in the 
DesCNN architecture. 

One issue worthy of note is that the size of feature maps does not 
change in the dense module; however, a standard CNN requires down- 
sampling layers that change the size of feature maps. To facilitate the 
down-sampling operation, transition layers (C3, C5) that perform 
convolution and pooling were inserted between dense blocks. The 
transition layers consist of batch normalization, rectified linear units 
(ReLU), a 1 × 1 convolutional layer, and a 2 × 2 maximum pooling layer. 
To improve model compactness, the m feature maps from the dense 
block are reduced to ⌊θm⌋ at transition layers using the compression 
factor (θ (Huang et al., 2017)), which was assigned to be 0.5 at both the 
transition and bottleneck layers in this study. 

Essentially, 9 × 9 image patches of predictors were fed into the input 
layer and 92 features were extracted from the consecutive convolutional 
layers (C1 ~ C6). These extracted features were then used as input to the 
fully connected layer to perform model fitting after the global averaging 
pooling operation. F7 ~ F10 is the fully connected layer for fitting 
features to SLWR by a large number of activation functions (ReLU). 
Three SLWR components were predicted in the output layer simulta-
neously based on the multi-task learning scheme. Therefore, the NLR 
was treated as an independent variable to be estimated, which avoids 
additional errors introduced from the estimated components. 

3.2.2. Fine-tuning SLWR using transfer learning 
To reduce the uncertainty of GLASS-AVHRR SLWR retrievals under 

specific conditions (Ta 〈230K), transfer learning, which aims to transfer 
knowledge across domains (Zhuang et al., 2021), was used to resolve the 
systematical bias mainly caused by the non-uniform distribution of the 
sample dataset across the feature cube (Guo et al., 2022). The specific 
steps were as follows:  

1) We determined the DesCNN-I in the source domain Ds = {(x,y)|xi
s ∈

Xi
s,yi

s ∈ Yi
s, i = 1,…,ns,ns ∈ N+} that included the features space Xs 

(AVHRR TOA observations, sun-viewing geometry, Ta, CWV, and 
RH) and global SLWR Ys based on the spatiotemporally matched 
training sample dataset.  

2) We retrained the modified DesCNN-III in the target domain Dt = {(x, 
y)|xi

t ∈ Xi
t,yi

t ∈ Yi
t,Xt(Ta < 230K), i = 1,…,nt,nt ∈ N+}. Relying on the 

DesCNN-I architecture, the knowledge in Ds was transferred to 
improve the predictive performance of the DesCNN-III on Dt. Spe-
cifically, Dt was randomly divided into calibration and validation 
datasets (7:3 ratio). DesCNN-III replaced the last three layers of 
DesCNN-I with three new initialized layers to discover the knowl-
edge on Dt, while other earlier layers kept the knowledge on Ds by 
freezing the weights. The calibration dataset was used to retrain the 
DesCNN-III to discover the specific patterns or relationships in Dt.  

3) After the DesCNN-III model was retrained, the validation dataset was 
used to evaluate the performance of DesCNN-III on Dt. Based on 

transferring learning, the accuracy of GLASS-AVHRR SLWR re-
trievals under specific conditions (Ta < 230 K) can be improved 
significantly. 

3.3. Training, evaluation, and analysis 

SLWR sample datasets at all sites from 2002 to 2018 were compiled 
first, including predictors and the integrated SLWR sample. Usually, 
approximately two-thirds of samples are used to train models and the 
remaining one-third of samples are used for the validation of model 
retrievals. In this study, training and validation samples (918,323 re-
cords) from 2002 to 2015 were used to develop the DesCNN models, and 
the remaining samples (191,732 records) from 2016 to 2018 served as 
an independent test dataset. The entire training procedure consisted of 
three steps. (1) DesCNN-I & -II models were developed using the 10-fold 
cross-validation (CV) approach (Refaeilzadeh et al., 2009) based on the 
training and validation dataset. The entire training and validation 
dataset was equally divided into ten subsets and the model was trained 
using nine subsets and then validated with the remaining one subset. 
The procedure was repeated ten times to ensure that every subset was 
used to evaluate the model’s performance. (2) After determining the 
hyper-parameter settings based on the 10-CV, the DesCNN-I & -II models 
were trained again using the entire training and validation dataset. The 
predictive power of the trained models was investigated using the in-
dependent test dataset to ensure the superiority and robustness of its 
predictive ability. (3) After completing the development of DesCNN-I & 
-II, DesCNN-III was developed using transfer learning as described in 
Section 3.2.2. 

Three metrics were used to evaluate the accuracy of GLASS-AVHRR 
SLWR, including MBE, RMSE, and determination of coefficient (R2). 
CERES-SYN, ERA5, and GLASS-MODIS SLWR products were used to 
evaluate the GLASS-AVHRR SLWR dataset under different surface and 
meteorological conditions against in situ measurements (386,721 re-
cords). The spatiotemporal consistency of GLASS-AVHRR SLWR prod-
ucts was evaluated at a global scale using the CERES-SYN and ERA5 
products. 

4. Results 

4.1. Uncertainty quantification and integration of three SLWR products 

Table 2 shows the accuracy statistics of the four SLWR datasets, 
including the CERES-SYN, ERA5, GLASS-MODIS, and the integrated 
SLWR sample. Benefiting from the introduction of GEO observations and 
assimilation of a large number of measurements, CERES-SYN and ERA5 
SLWR estimates had higher R2 and lower RMSEs compared with GLASS- 
MODIS. Specifically, CERES-SYN and ERA5 DLR and NLR showed higher 
accuracy, while the RMSE of GLASS-MODIS ULR had a marginal 
decrease (~0.5 Wm− 2). However, no product simultaneously provided 
three SLWR components with the best accuracy. 

Compared with the other three products, the integrated SLWR values 
better correlated with in situ measurements. The integrated DLR showed 
small RMSE (12.24 Wm− 2) and MBE (0.01Wm− 2), at ~43.62% and 
100% lower, respectively, than for CERES-SYN. For the integrated ULR, 
the RMSE (10.04 Wm− 2) and MBE (0.00 Wm− 2) were ~ 43.50% and 
100% lower than those for GLASS-MODIS ULR. The most significant 

Table 2 
Uncertainty statistics of the CERES-SYN, ERA5, GLASS, and the integrated SLWR components against in situ observations. Units of MBE and RMSE are Wm− 2.  

Data set DLR ULR NLR  

R2 RMSE MBE R2 RMSE MBE R2 RMSE MBE 

CERES 0.91 21.71 − 2.18 0.95 18.17 − 3.67 0.70 18.59 1.04 
ERA5 0.93 21.95 − 9.28 0.95 18.27 − 1.90 0.71 19.87 − 7.79 
GLASS-MODIS 0.84 28.02 − 4.53 0.95 17.77 − 1.36 0.46 26.23 − 3.41 
Integrated 0.97 12.24 0.01 0.98 10.04 0.00 0.92 9.94 0.02  
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improvement was in the integrated NLR in comparison with CERES- 
SYN, with 46.53% and 98.07% lower RMSE and MBE, respectively. 
Therefore, the integrated SLWR dataset was treated as ‘true’ values and 
used to develop the DesCNN models. 

4.2. Evaluation of model performance 

4.2.1. Development of DesCNNs using the integrated SLWR dataset 
The 10-fold CV results of DesCNN-I & -II in the training and valida-

tion dataset (2002–2015) are presented in Table 3. The training results 
were taken from the best fitting model over 10 CV rounds, while the 
validation results were obtained from the 10-round combination. For 
DesCNN-I, the ULR estimates presented the best training accuracy (R2 =

0.99, RMSE = 7.97 Wm− 2, MBE = − 0.82 Wm− 2). The training accuracy 
of DLR (NLR) estimates also performed well [R2 = 0.98 (0.90), RMSE =
10.14 (9.87) Wm− 2, MBE = − 1.52 (− 1.18) Wm− 2]. Therefore, the 
overall training result of DesCNN-I was satisfactory for three SLWR 
components. Moreover, the validation accuracy of DesCNN-I was close 
to the training accuracy with small differences in R2 (= 0), RMSE (< 2.5 
Wm− 2), and MBE (< 1.8 Wm− 2). These statistics showed that the trained 
DesCNN-I model was robust and stable, and that no obvious overfitting 

occurred in the training procedure. 
As a backup model, the DesCNN-II model would ensure the full 

coverage of the GLASS-AVHRR dataset to improve the data quality of the 
final dataset in light of the common gaps in the AVH02C1 product. 
Similarly, the performances of the DesCNN-II model between the 
training and validation phases were close to those of each other with 
negligible differences in R2 (< 0.1), RMSE (< 0.7 Wm− 2), and MBE (<
2.74 Wm− 2), showing a good generalization in estimating the global 
SLWR. However, the training and validation accuracies were slightly 
lower than those of the DesCNN-I model, with a slight increase in RMSEs 
(1–3 Wm− 2). This is because cloud thermal properties implicitly pro-
vided by AVHRR TOA observations were not provided for the DesCNN-II 
model. Overall, the developed DesCNN-I & -II models were successful 
with high and comparable accuracy for estimated SLWR at both the 
training and validation phases. The quality assurance (QA) field was 
included in the archived GLASS-AVHRR SLWR products to distinguish 
the use of models. 

With respect to investigating the predictive power, Fig. 4 shows the 
validation results of the DesCNN-I & -II models in the independent test 
dataset (2016–2018). SLWR retrievals from the DesCNN-I model agreed 
with the integrated samples (i.e., R2 ≥ 0.89) in the independent test 
dataset (Fig. 4a–c), with small RMSEs (9.66–10.01 Wm− 2) on average 
for SLWR estimates. The negative MBEs of estimated DLR (− 2.85 Wm− 2) 
and ULR (− 4.78 Wm− 2) indicated an underestimation, which mainly 
occurred in the high SLWR values. 

The performance of DesCNN-II in the independent test dataset was 
satisfactory for the three SLWR components (Fig. 4d–f) with R2 of 
0.84–0.99, RMSEs of 10.71–12.94 Wm− 2, and MBEs of − 0.92–-5.77 
Wm− 2. This demonstrated that DesCNN-II provided SLWR estimates 
with an acceptable uncertainty and was a good backup model for esti-
mating the global SLWR. The accurate performances for the independent 
test dataset illustrated that the DesCNN-I & -II models had a strong 
predictive power, i.e., the potential to generate a long-term spatially 

Table 3 
Results of 10-fold cross validation for the training and validation of SLWR re-
trievals against the integrated SLWR sample. Units of MBE and RMSE are Wm− 2.  

Model Variable Training Validation   

R2 RMSE MBE R2 RMSE MBE 

DesCNN-I DLR 0.98 10.14 − 1.52 0.98 11.59 − 3.35 
ULR 0.99 7.97 − 0.82 0.99 9.47 − 2.49 
NLR 0.90 9.87 − 1.18 0.90 9.88 − 1.26 

DesCNN-II DLR 0.97 12.26 1.99 0.97 12.96 − 3.74 
ULR 0.99 9.40 − 3.41 0.98 10.47 − 3.57 
NLR 0.83 12.49 − 0.03 0.84 12.23 − 0.64  

Fig. 4. Evaluation of GLASS-AVHRR SLWR estimates in the independent test dataset against the integrated SLWR values. Resulting (a–c) DesCNN-I and (d–f) 
DesCNN-II models. Solid lines denote 1:1 lines. MBE, RMSE, and R2 are given. Units of MBE and RMSE are Wm− 2. The colour bar represents the normalized density of 
the samples, which was calculated using a Gaussian kernel density function. 
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continuous SLWR dataset. 
The DesCNN-III model was additionally developed based on transfer 

learning to correct the systematical bias of DesCNN-I at Ta < 230 K. 
Table 4 shows a comparison of SLWR estimates derived from the 
DesCNN-I & -III models in the independent test dataset. The DesCNN-III 
model mainly improved the accuracies of the DLR and ULR components. 
An obvious overestimation under low Ta conditions was well resolved, i. 
e., MBEs decreased by ~16 and 18 Wm− 2 for DLR and ULR, respectively. 
The RMSEs of SLWR estimates also decreased significantly by 51.19% 
for DLR and 75% for ULR, respectively. However, the improvement in 
NLR retrievals was not significant (RMSE only decreased by 0.2 Wm− 2). 
Generally, the DesCNN-III model greatly strengthened the performance 
of the SLWR retrievals at Ta < 230 K, further improving the overall 
accuracy of the SLWR estimates. 

4.2.2. Spatiotemporal validation using in situ observations 
To investigate whether these models could generate long-term 

spatiotemporally continuous SLWR datasets with high accuracy, the 
spatial-temporal performances of the DesCNN models was evaluated 
using globally distributed in situ measurements. Fig. 5 shows the spatial 
performance of DesCNN models with respect to estimating the SLWR. 
For the DLR estimates (Fig. 5a, d, g), DesCNN models performed well in 
the U.S., Europe, and Australia (RMSEs <20 Wm− 2, R2 > 0.8). However, 
there were relatively large uncertainties for eastern Asia at some sites 
(RMSE >25 Wm− 2, R2 < 0.8). Previous studies reported that systematic 
errors and operation-related problems were common in the radiation 
measurements obtained in China (Zhang et al., 2015; Tang et al., 2010; 
Shi et al., 2008). The large uncertainty of DLR retrievals from eastern 
Asia was likely attributable to the poor quality of the in situ measure-
ments. Compared with the DLR retrievals, the overall uncertainty of ULR 
values was lower (RMSEs <15 Wm− 2; Fig. 5e). The ULR estimates at 
most sites correlated well with the in situ measurements (R2 > 0.9; 
Fig. 5b). However, significantly negative MEBs (< − 8 Wm− 2) of DLR 
and ULR estimates were observed in tropical areas, mainly in Australia 
(Fig. 5g, h), which was corresponding to the underestimation at high 
values (Fig. 4). The reason for the underestimation is mainly due to the 
smaller sample size in tropical areas (Fig. S2), which results in a local 
overfitting issue. In contrast, the uncertainty of the estimated NLR (R2 <

0.8, RMSEs <25 Wm− 2; Fig. 5c, f) was generally larger than that of the 
DLR and ULR, although the MBEs of the NLR estimates were overall 

Table 4 
Evaluation of the GLASS-AVHRR SLWR retrievals at Ta < 230 K using the 
DesCNN-I&III models against the integrated SLWR sample. Units of MBE and 
RMSE are Wm− 2.  

Variable DesCNN-I DesCNN-III  

R2 RMSE MBE R2 RMSE MBE 

DLR 0.52 21.49 18.77 0.55 10.49 2.02 
ULR 0.87 20.36 19.51 0.89 5.09 − 1.56 
NLR 0.30 10.91 − 2.15 0.47 10.71 4.08  

Fig. 5. Spatial distribution of statistic metrics. (a–c) R2, (d–f) RMSE, and (g–i) MBE of daily GLASS-AVHRR SLWR at each meteorological station between 2002 and 
2018. (a, d, g) are validation results of DLR; (b, e, h) are validation results of ULR; (c, f, i) are validation results for NLR. 
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smaller. The larger uncertainty of NLR was attributed to the fact that the 
NLR is comprehensively affected by surface and atmospheric thermal 
properties but DLR and ULR are more dependent on atmospheric and 
surface thermal properties, respectively. Overall, the DesCNN models 
successfully estimated the SLWR at a global scale, while its performance 
was slightly reduced in tropical and polar regions. 

Fig. 6 shows the temporal performance of the DesCNN models for 
estimating SWLR at all monitoring sites as a function of the month of the 
year between 2002 and 2018. The temporal robustness of the model was 
well maintained over the entire period (Fig. 6a, d, g), with R2 > 0.8 for 
DLR and ULR, and > 0.6 for NLR, generally higher than those of other 
products. Stable and smaller RMSEs of the GLASS-AVHRR SLWR re-
trievals were observed over the entire period (Fig. 6b, e, h). In addition, 
GLASS-AVHRR DLR and NLR estimates showed smaller MBEs over the 
entire period compared with the other three products (Fig. 6c, j), while 
the GLASS-AVHRR ULR values had a larger fluctuation of MBE (Fig. 6f). 
Interestingly, the correlation had an overall concave-upward or down-
ward parabolic trend in each year for SLWR estimates, which was 
grossly proportional to annual variations in atmospheric temperature 
and moisture profiles dominated by solar radiation heating. 

One issue worthy of note was that there were larger uncertainties 
from 2015 to 2018 than from 2002 to 2014 in the four SLWR datasets. 
The large uncertainties from 2015 to 2018 were due to the unevenly 
distributed sites and varying observation lengths at every site rather 
than the models themselves. Fig. S1 shows the lengths of available ob-
servations at every site. Most in situ observations after 2015 were taken 
from the PROMICE and IMAU networks located in the polar regions. The 
larger uncertainty of SLWR values in the poles resulted in larger RMSEs 
after 2015. Generally, compared to the other three products, the 
DesCNN models showed temporal superiority and robustness with 
respect to estimating SLWR, which demonstrated the potential to 
accurately reconstruct the long-term global SLWR variation. 

4.3. Comparison with other products 

Fig. 7 shows the direct validation results of the four SLWR datasets 
against globally distributed in situ measurements. GLASS-AVHRR SLWR 

retrievals had better agreement with in situ observations compared with 
the other three products (Fig. 7d, h, l). Specifically, the GLASS-AVHRR 
DLR retrievals explained 92% variation of in situ DLR measurements, 
and had the highest accuracy (RMSE = 18.66 Wm− 2, MBE = − 2.69 
Wm− 2), followed by CERES-SYN, ERA5, and GLASS-MODIS. GLASS- 
AVHRR ULR retrievals were also best correlated with in situ measure-
ments among the four datasets (R2 = 0.96). The other three products 
showed similar and comparable accuracies for their ULR values. For 
NLR, GLASS-AVHRR exhibited a higher accuracy (RMSE = 16.29 Wm− 2, 
MBE = 0.49 Wm− 2) than CERES-SYN, ERA5, and GLASS-MODIS. 
Generally, the GLASS-AVHRR dataset showed lower uncertainty when 
compared with the other three well-known SLWR products. However, 
the underestimation of the GLASS-AVHRR at high values (DLR > 400 
Wm− 2, ULR > 500 Wm− 2) is worthy of more attention. 

To more clearly reveal the uncertainty variation of GLASS-AVHRR 
SLWR estimates, the four datasets were comprehensively evaluated 
under the different surface and meteorological conditions, including 
elevation, land cover type, Ta, CWV, and RH, in different latitudinal 
zones (i.e., polar regions at latitudes >60◦ and non-polar regions at 
latitudes <60◦). GLASS-AVHRR DLR estimates had smaller uncertainties 
than those of the other three products at most altitude ranges (Fig. 8a, 
b), with the largest RMSEs of 26.58 and 22.38 Wm− 2 for non-polar and 
polar regions, respectively. Meanwhile, most MBEs of GLASS-AVHRR 
DLR were closer to zero compared to other products at different lati-
tude bins. As the altitude increased, the RMSEs and MBEs of the DLR 
estimates increased, which is likely due to the decreasing sensitivity of 
DLR to variations in cloud cover and water vapor (Naud et al., 2013). For 
most land cover types (Fig. 8c, d), GLASS-AVHRR DLR estimates 
exhibited lower uncertainties, particularly for forest, wetland, and snow 
surfaces, with RMSEs of 15.43 (19.29), 21.31 (19.78), and 20.50 Wm− 2 

in polar (non-polar) regions. However, the uncertainty of GLASS- 
AVHRR DLR was larger than that of the other products in cropland 
(latitudes >60◦). 

For different meteorological conditions, the GLASS-AVHRR DLR 
dataset also exhibited an obvious advantage with respect to uncertainty 
variation. GLASS-AVHRR DLR estimates had the smallest RMSEs and 
MBEs throughout the whole Ta range (Fig. 8e, f), with RMSEs of 

Fig. 6. Temporal profiles of R2, RMSE, and MBE of the global daily mean SLWR. The profiles based on (a–c) DLR, (d–f) ULR, and (g–i) NLR retrievals as a function of 
the month between 2002 and 2018. The red line denotes values from GLASS-AVHRR, the blue line denotes values from CERES-SYN, black line denotes values from 
ERA5, and the yellow line denotes values from GLASS-MODIS. (For interpretation of the references to colour in this figure legend, the reader is referred to the web 
version of this article.) 
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17.66–27.30 Wm− 2 (16.09–23.41 Wm− 2) for non-polar (polar) regions. 
Most biases were closer to zero, with MBEs varying from 5 to − 3 Wm− 2 

for polar and non-polar regions. However, when CWV > 40 kg.m− 2, the 
error of GLASS-AVHRR DLR estimates was larger than that of CERES- 
SYN and ERA5 for non-polar regions (Fig. 8g). The differences in 
RMSE between GLASS-AVHRR and ERA5 DLR values ranged from 1 to 3 
Wm− 2. The larger uncertainty at CWV > 40 kg.m− 2 was caused by the 
underestimation (MBE < − 8 Wm− 2; Fig. 5g) of GLASS-AVHRR DLR 
estimates at high values (> 400 Wm− 2; Fig. 7). The fewer samples in the 
tropical areas and the decreasing sensitivity of DLR to high CWV 
(Ruckstuhl et al., 2007) are responsible for the underestimation of 
GLASS-AVHRR DLR. At other CWVs and RHs, the GLASS-AVHRR DLR 
estimates still showed smaller RMSEs and MBEs than the other datasets 
for both non-polar and polar regions (Fig. 8h, i, j). 

The uncertainty variations of regional ULR and NLR estimates at 
different surface and meteorological conditions are presented in Figs. S3 
and S4. GLASS-AVHRR ULR and NLR estimates exhibited pronounced 
advantages with respect of accuracy over the other three products for 
most surface and meteorological conditions. However, it is worth noting 
that GLASS-AVHRR ULR at CWV > 48 kg.m− 2 was worse than the other 
three products. The largest difference in RMSE was ~4 Wm− 2, which 
was observed between GLASS-AVHRR and ERA5 ULR values at a CWV of 
56–64 kg.m− 2, which was also caused by the underestimation (MBEs <
− 8 Wm− 2; Fig. S3g) of GLASS-AVHRR ULR at high values (Fig. 7) in 
tropical regions (Fig. 5h). Overall, the GLASS-AVHRR SLWR products 
were better than those of the current state-of-art SLWR products at the 
most surface and meteorological conditions. However, more effort is 

needed to address the underestimation in GLASS-AVHRR DLR and ULR 
estimates in tropical areas when atmospheric CWV is >40 kg.m− 2. 

4.4. Generation of global SLWR products 

The major advantages of using polar-orbiting AVHRR observations 
to estimate SLWR are the near-complete coverage of the Earth at a daily 
scale and a long duration, i.e., from 1981 to the present, which ensures 
the generation of a long-term global seamless GLASS-AVHRR SLWR 
dataset. CERES-SYN SLWR maps were used to investigate the spatial 
consistency of the GLASS-AVHRR SLWR retrievals. Fig. S5 shows the 
global spatial distribution of GLASS-AVHRR and CERES-SYN SLWR 
values in January 2008. The monthly global SLWR estimates were 
similar between the CERES-SYN and GLASS-AVHRR products, with a 
DLR of 239.42 ± 86.29 Wm− 2, ULR of 287.98 ± 95.35 Wm− 2, and NLR 
of − 49.37 ± 23.16 Wm− 2 for GLASS-AVHRR and DLR of 234.77 ±
94.42 Wm− 2, ULR of 287.32 ± 102.04 Wm− 2, and NLR of − 52.55 ±
26.47 Wm− 2 for CERES-SYN. Spatially, DLR and ULR values were high 
in South America, southern Africa, and Australia in January (Fig.S5a, b), 
while high NLR values occurred in northern Eurasia, Greenland, and 
central South America (Fig. S5c). A similar latitudinal distribution of 
SLWR estimates was reported for the two datasets from January 
(Fig. 9g–i). A better agreement between GLASS-AVHRR and CERES-SYN 
SLWR was observed at latitudes between 0◦ and 40◦ N. However, a 
larger discrepancy occurred from − 20◦ to − 40◦, especially in Australia, 
which was mainly due to the local overfitting issue of the DesCNN 
models (induced by the sparsely distributed sites in tropical areas). 

Fig. 7. Evaluation of daily SLWR values from the CERES-SYN, ERA5, GLASS-MODIS, and GLASS-AVHRR datasets. Results for (a–d) DLR, (e–h) ULR, and (i–l) NLR. 
Solid lines denote 1:1 lines. The MBE, RMSE, and R2 are given. The colour bar represents the normalized density of samples, calculated using a Gaussian kernel 
density function. 
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As the sun crosses the equator, high SLWR values from the two 
datasets occurred in the Northern Hemisphere in July (Fig. S6). The 
monthly global GLASS-AVHRR estimates were 283.39 ± 103.02 Wm− 2 

for DLR, 336.96 ± 121.42 Wm− 2 for ULR, and − 54.92 ± 29.40 Wm− 2 

for NLR; for CERES-SYN products, these values were 288.83 ± 111.62 

Wm− 2 for DLR, 337.99 ± 131.95 Wm− 2 for ULR, and − 49.16 ± 33.11 
Wm− 2 for NLR. Similar latitudinal distributions of GLASS-AVHRR and 
CERES-SYN SLWR estimates were observed (Fig. 9j–l). GLASS-AVHRR 
SLWR was slightly larger than the CERES-SYN for Greenland and 
Antarctica in July (Fig. 9d–e). 

Fig. 8. Uncertainty variations (RMSE, MBE) of CERES-SYN, ERA5, GLASS-MODIS, and GLASS-AVHRR DLR retrievals for polar and non-polar regions under different 
conditions. Uncertainty variation as a function of (a–b) elevation, (c–d) land cover, (e–f) Ta, (g–h) CWV, and (i–j) RH. Red markers denote results from non-polar 
regions, and blue markers denote results from polar regions. The dashed lines represent the MBE variations of the DLR values from the four datasets under different 
surface and meteorological conditions. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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We further calculated the global mean SLWR values of GLASS- 
AVHRR and CERES-SYN products in overlapping land pixels for each 
month in 2008 (Table S2). We found that GLASS-AVHRR SLWR esti-
mates were close to those of CERES-SYN. The differences in SLWR be-
tween the two datasets were the smallest in winter (~0–2 Wm− 2), while 
the largest differences occurred in summer (difference of ~5 Wm− 2). 
Therefore, the GLASS-AVHRR and CERES-SYN SLWR products had a 
good spatial consistency across the globe based on the above statistics, a 
phenomenon that confirmed the ability of DesCNN models to accurately 
estimate the global SLWR. 

Long-term variations in global SLWR based on the GLASS-AVHRR 
are presented in Fig. 10. Temporal variations in the differences be-
tween zonal mean daily SLWR estimates between GLASS-AVHRR and 
CERES-SYN and between GLASS-AVHRR and ERA5 overland from 1981 
to 2018 are also included. An obvious annual pattern driven by the 
course of the sun’s position was apparent in DLR and ULR. A higher 
intensity of NLR was observed in the tropical (0 ± 15◦) and polar areas 
(> ~50◦), reflecting more cloud covers in the poles and higher water 
vapor content in the tropical zone (King et al., 2013; Eastman and 
Warren, 2013). In addition, differences were small overall, demon-
strating that GLASS-AVHRR SLWR products were consistent with 
CERES-SYN after 2000 and with ERA5 from 1981 to 2018, both spatially 
and temporally. There was a systematic underestimation in tropical 
areas for DLR and ULR (compared with CERES-SYN and ERA5), which 
has been described in Section 4.3. There are several reasons for these 
spatiotemporal differences, including differences in spatial resolution, 
driving data uncertainties, sensor channel responses, and particularly, 
retrieval algorithms. Overall, GLASS-AVHRR products had a higher 
spatial resolution (5 km), a longer period (1981–2018), and lower 
overall uncertainty (Fig. 7) compared with the current state-of-the-art 
SLWR products. As such, GLASS-AVHRR has the potential to play an 
important role in numerical simulations and climate trends analysis. 

5. Contribution of the TOA reflectance to the all-sky DLR 

The selection of proper input features is a prerequisite for DesCNN 
models to estimate accurate GLASS-AVHRR SLWR retrievals. Satellite 
TOA radiances comprehensively record thermal radiation information 
on the surface and atmospheric column under clear-sky conditions; thus, 

clear-sky SLWR can be retrieved from satellite thermal observations by 
establishing regression relationships (Cheng and Liang, 2016; Wang and 
Liang, 2009). However, when clouds are present, the DesCNN models 
cannot estimate accurate SLWR from satellite TOA radiances as the 
longwave radiation emitted from the surface and atmosphere below the 
clouds is dramatically absorbed by low-level liquid water clouds (Wang 
et al., 2018; Yang and Cheng, 2020). 

For cloudy-sky conditions, DLR consists of two parts, i.e., atmo-
spheric longwave radiation below the clouds and cloud-emitting long-
wave radiation toward the surface. As the thermal radiation emitted by 
the near-surface atmospheric gases is absorbed by the low-level clouds, 
ERA5 near-surface meteorological parameters was used to help estimate 
the atmospheric longwave radiation below the clouds. According to the 
Stefan–Boltzmann equation, Ta and atmospheric effective emissivity (εa) 
derived from RH and Ta are needed to calculate the near-surface at-
mospheric longwave radiation. Additionally, considering water vapor as 
the most important greenhouse gas for longwave radiation, CWV was 
used to retrieve atmospheric longwave radiation below the clouds. 
Therefore, Ta, RH, and CWV were determined to help retrieve DLR 
below the clouds. 

For retrieving cloud-emitting longwave radiation, εa was revised by 
introducing cloud fraction (CF) to consider cloud influence on the DLR 
in previous studies (Crawford and Duchon, 1999; Yang et al., 2010; 
Carmona et al., 2014). Some studies have employed CF to derive the all- 
sky DLR (Lopes et al., 2022) and produced the all-sky longwave radia-
tion product (Karlsson et al., 2013). CF can be alternatively represented 
by the ratio of downward shortwave radiation (Rsw) and its clear-sky 
value. Therefore, Rsw has been directly used to characterize cloud in-
formation in developing ML methods to estimate the all-sky DLR (Wei 
et al., 2021; Feng et al., 2020). Considering that uncertainty in Rsw es-
timates impacts the estimated DLR, we used raw TOA shortwave 
reflectance to provide indications of atmospheric and cloud properties in 
this study. By incorporating AVHRR TOA reflectance (characterizing 
clouds properties), BTs and near-surface meteorological information 
provided by ERA5, we expected that DesCNN models could more 
accurately estimate all-sky DLR retrievals. 

Table 5 presents the evaluation results of GLASS-AVHRR SLWR re-
trievals using different input features to understand their contributions 
to estimating GLASS-AVHRR SLWR. The worst accuracy of GLASS- 

Fig. 9. Global differences between GLASS-AVHRR and CERES-SYN SLWR estimates. Estimates at a monthly time scale (a–f), and the corresponding comparison of 
latitudinal gradients between the two datasets (g–l). The left panels (a–c, g–i) show the results from January 2008; the right panels (d–f, j–l) show the results from 
July 2008. Positive values (red) indicate that the GLASS-AVHRR estimates are larger. Shading represents the variation in the SLWR values. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.) 
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Fig. 10. Temporal variations in the GLASS-AVHRR zonal mean daily global SLWR and their differences against CERES-SYN and ERA5 zonal mean daily global SLWR 
estimates from 1981 to 2018. Temporal variations for (a–c) DLR, (d–f) ULR, and (g–i) NLR. Positive values (red) indicate GLASS-AVHRR estimates are larger. Blank 
space represents the lack of values for CERES-SYN before 2000 and over the oceans for the entire period. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.) 
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AVHRR SLWR retrievals was obtained only when using AVHRR TOA 
BTs, which revealed the insufficient information regarding TOA BTs 
with respect to estimating all-sky SLWR (Inputs-I). When AVHRR TOA 
reflectance was included, the RMSEs of GLASS-AVHRR SLWR retrievals 
decreased for three longwave components (Inputs-II). Shortwave 
reflectance decreased the overall uncertainty of all-sky GLASS-AVHRR 
SLWR by providing information regarding atmospheric and cloud 
properties. Additionally, when near-surface meteorological variables 
were individually employed as features (Inputs-III), the uncertainty of 
GLASS-AVHRR SLWR retrievals decreased significantly. The weighting 
function of SLWR peaked near the surface (Schmetz, 1989b), illustrating 
that accurate SLWR values could be retrieved by accessing near-surface 
meteorological information only. The accuracy of estimated all-sky 
SLWR was further improved by combing BTs and near-surface meteo-
rological variables (Inputs-IV). This is because the BTs additionally 
provide meteorological information at higher altitudes, although the 
atmospheric gases at low-pressure levels contribute little to the ground- 
level DLR. However, the TOA reflectance seemed to be less important 
when TOA BTs and near-surface meteorological information has been 
provided for the DesCNN models (Inputs-V). 

To understand whether TOA reflectance can impact the all-sky SLWR 
estimation, a detailed analysis was further conducted at the site scale. 
Considering a large improvement in estimated DLR (Inputs-I & -II), the 
relative differences in RMSEs (δRMSE) between GLASS-AVHRR DLR re-
trievals estimated using (RMSEwith) and without (RMSEwithout) TOA 
shortwave reflectance were calculated to understand the contribution of 
shortwave reflectance to DLR estimation, as follows, 

δRMSE = (RMSEwithout − RMSEwith)/RMSEwith × 100 (1) 

Fig. 11(a) shows the spatial distribution of δRMSE at all sites. Small 
δRMSE values occurred at most site locations, resulting in a small differ-
ence between Input-IV and -V. However, larger δRMSE occurred in trop-
ical and polar regions (i.e., Greenland and Antarctica), illustrating the 
significant contributions of TOA reflectance in these latitudinal zones. 
Generally, cloud cover in polar regions is higher than that in middle and 
low latitudes, while CWV in tropical areas is higher than that in other 
latitudinal zones (Stephens et al., 2012). As the two most important 
longwave radiation emitters, ERA5-provided CF and CWV were used to 
understand the contribution of AVHRR TOA shortwave reflectance. 
When CF > 0.4, the TOA shortwave reflectance contributed to GLASS- 
AVHRR DLR retrievals in polar regions (δRMSE of 8% to 16%; 
Fig. 11b). As the overall CWV is small at the poles, the contribution of 
TOA shortwave reflectance to GLASS-AVHRR DLR was not significant at 
the different CWV conditions (Fig. 11c). Additionally, TOA shortwave 
reflectance had an impact on DLR retrievals at high CF and CWV con-
ditions in tropical regions. As CF increased, δRMSE increased from 10% to 
20%, showing that the contribution of TOA shortwave reflectance was 
more significant with high CFs (Fig. 11d). When there is high CWV (>
32 kg.m− 2), similar conclusions can be drawn for tropical areas where 
shortwave reflectance plays an important role with respect to estimating 
GLASS-AVHRR DLR values with δRMSE ranging from 15 to 25%. 

Consequently, TOA shortwave reflectance makes a function in DLR 
estimation in tropical and polar regions. When there is high CF (>0.4) in 

polar regions, the effect of shortwave reflectance becomes significant 
and is useful for estimating all-sky DLR. Compared with polar regions, 
the contribution of shortwave reflectance was more significant in trop-
ical areas with respect to estimating all-sky DLR retrievals, particularly 
at high CF and CWV conditions. Therefore, TOA shortwave reflectance is 
a meaningful input feature for DesCNN models with respect to esti-
mating DLR values in polar and particularly tropical areas by providing 
implicit properties of the atmosphere and clouds. However, considering 
that the spectral resolution of the AVHRR sensor is coarse, other mul-
tispectral sensors (like MODIS) may provide more evidence about the 
contributions of TOA reflectance at different visible and near-infrared 
wavebands to the all-sky DLR estimation. Also, we suspect that the 
contribution of TOA reflectance may depend on the height and type of 
the cloud, which needs a more explicit analysis in the future study. 

6. Discussion 

The high accuracy of GLASS-AVHRR SLWR products reflects the 
advantages of comprehensive input features, the integration of current 
high-quality SLWR products, the direct estimation algorithm, and the 
architecture and data-mining ability of the DesCNN models. To defini-
tively show the advantage of integrated SLWR samples, we used the 
integrated samples from three SLWR products and individual SLWR 
datasets to train two different DesCNN models and compared the un-
certainty changes in GLASS-AVHRR SLWR retrievals (Table 6). The 
highest accuracy was obtained when all three products were employed 
to generate the integrated SLWR samples. In contrast, the improvements 
to GLASS-AVHRR SLWR retrievals were limited as the RMSE only 
decreased by ~1–2 Wm− 2 for the three SLWR components, compared to 
the results obtained using individual dataset integration. Theoretically, 
multiple product integration is more reasonable because bias from each 
product can be offset in an averaging sense and the dependency of es-
timates on individual products is also decreased. 

Further, we employed instantaneous AVHRR TOA observations to 
retrieve daily SLWR values in this study. This seems unreasonable as 
instantaneous satellite ‘snapshots’ cannot capture the diurnal variation 
in SLWR. Theoretically, a two-step algorithm should be adopted to es-
timate daily SLWR based on polar-orbiting satellite observations, in 
which instantaneous SLWR values are first estimated at the time of 
satellite measurements and daily SLWR values are subsequently calcu-
lated using the temporal upscaling methods. The GLASS-MODIS daily 
SLWR products were generated based on the two-step algorithm. The 
clear-sky hybrid algorithm was first used to estimate instantaneous 
SLWR values from MODIS data (Cheng et al., 2017; Cheng and Liang, 
2016); linear sine interpolation was used to retrieve daily SLWR values 
subsequently (Zeng and Cheng, 2021). The large uncertainty of GLASS- 
MODIS SLWR estimates—mainly induced by the cloudy-sky SLWR and 
sine interpolation method—demonstrates that the two-step algorithm 
cannot estimate accurate daily SLWR values. The cloudy-sky GLASS- 
MODIS DLR was calculated using the single-layer cloud model (Forman 
and Margulis, 2007) that uses cloud top temperature to calculate cloud- 
emitting longwave radiation. However, the factor needed to control 
cloud-emitting longwave radiation is cloud base temperature, which has 

Table 5 
Accuracy of GLASS-AVHRR SLWR retrievals for DLR, ULR, NLR using different input features for DesCNN modeling. Inputs-I includes AVHRR TOA BTs for channels 
3–5; Inputs-II consists of AVHRR TOA reflectance and BT for channels 1–5; Inputs-III combines CWV, Ta, RH; inputs-IV includes AVHRR TOA BTs for channels 3–5, 
CWV, Ta, RH, and inputs-V includes AVHRR TOA reflectance and BTs for channels 1–5, CWV, Ta, RH. Units of MEB and RMSE are Wm− 2.  

Feature group DLR   ULR   NLR   

R2 RMSE MBE R2 RMSE MBE R2 RMSE MBE 

Inputs-I 0.75 33.41 0.46 0.86 26.61 0.30 0.65 20.17 0.07 
Inputs-II 0.80 28.74 − 1.92 0.89 24.56 − 3.18 0.70 18.63 0.91 
Inputs-III 0.91 22.63 4.65 0.95 16.90 4.54 0.68 19.00 − 0.06 
Inputs-IV 0.92 19.96 − 2.80 0.96 15.65 − 2.98 0.77 16.63 − 0.38 
Inputs-V 0.92 19.00 − 2.57 0.96 15.39 − 3.46 0.77 16.10 0.57  
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a large temperature difference with respect to the cloud top (Wang et al., 
2018). Additionally, the sine interpolation is based on half-sine varia-
tion during the daytime and linear variation during the nighttime, which 
inevitably introduces errors in the final daily SLWR values. 

Comparatively, considering the good relationships between instan-
taneous and daily radiation, it is better to use instantaneous satellite 

observations to directly estimate daily SLWR values based on the ML 
methods. The direct estimation algorithm avoids additional errors 
brought by the temporal upscaling method and has been successfully 
used in several studies (Chen et al., 2020; Wang et al., 2015; Wang and 
Liang, 2017). However, to further improve the daily SLWR estimates, 
diurnal variation information regarding the surface and atmosphere is 

Fig. 11. Contribution of the AVHRR TOA shortwave reflectance to GLASS-AVHRR DLR retrievals. (a) is the spatial distribution of δRMSE. (b) and (c) are RMSE 
variations of GLASS-AVHRR DLR values as a function of cloud fraction and CWV in polar regions. (d–e) same as (b–c) but for tropical regions. Red and blue circles 
denote RMSEwithout and RMSEwith, which show the DesCNN DLR RMSEs with and without AVHRR TOA reflectance. Gray bar represents δRMSE. (For interpretation of 
the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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still needed. This is solved by incorporating geostationary satellite ob-
servations with a finer temporal resolution (e.g., CERES-SYN) and 
providing additional atmospheric parameters at the daily scale (Xu 
et al., 2020). Therefore, ERA5 meteorological parameters were 
employed at a daily time scale to mitigate the influence of temporal scale 
differences on the GLASS-AVHRR SLWR estimates. 

Finally, the success of retrieving GLASS-AVHRR SLWR estimates can 
be largely attributed to the strong data mining of DesCNN model and its 
architecture design. The relationship between satellite TOA observa-
tions and SLWR is highly complicated and is a comprehensive function 
of the surface, cloud, and atmospheric properties. Layers in DesCNN can 
receive feature maps from all preceding layers as inputs to generate 
diversified features and richer patterns, which facilitate the acquisition 
of “collective knowledge.” These rich features and patterns assist in 
learning the complicated relationships between satellite signals and in 
situ SLWR observations, resulting in more accurate SLWR estimates. Due 
to the channel-wise concatenation throughout its dense blocks, DesCNN 
maintains both low- and high-level complexity features to handle multi- 
level features contributes to better SLWR estimates. In addition, DesCNN 
incorporates the spatially neighboring information about the surface 
and atmosphere rather than the information at individual pixels 
approximately to estimate SLWR, which is particularly important in 
high-resolution satellite images due to the 3-D radiative effects of clouds 
and the atmosphere (Wyser et al., 2005; Xu et al., 2022). 

7. Conclusions 

SLWR is a critical component of the Earth’s total energy and drives 
the surface energy balance at the interface between the Earth’s surface 
and atmosphere. Current satellite-derived SLWR products have different 
limitations, such as a relatively short period (e.g., CERES-SYN), coarse 
spatial resolution (e.g., GEWEX-SRB, CERES-SYN), and clear-sky 
instantaneous estimation (e.g., GLASS-MODIS), that hinder their in- 
depth applications in hydrological, meteorological, agricultural, and 
climate analysis. A long-term, high-resolution, accurate daily mean 
SLWR product is still needed for numerical modeling and climate 
change. In this study, we developed an effective methodology for 
obtaining a 38-year (1981–2018) daily SLWR dataset at 5 km spatial 
resolution from AVHRR TOA observations and ERA5 meteorological 
data using multiple densely connected neural networks (DesCNNs). The 
DesCNN models were developed using an integrated SLWR sample 
dataset from CERES-SYN, ERA5, and GLASS-MODIS SLWR retrievals to 
synergize superior SLWR products. Specifically, the DesCNN models 
accurately estimated the GLASS-AVHRR SLWR values under the all-sky 
condition by establishing statistical relationships among the integrated 
SLWR samples, AVHRR TOA shortwave reflectance, thermal BTs, sun- 
viewing geometry (SZA, VZA, RAA), and ERA5 near-surface meteoro-
logical variables (i.e., Ta, CWV, RH). Transfer learning was used to 
correct the variation in SLWR when Ta < 230 K. We found that AVHRR 
TOA shortwave reflectance had a significant contribution to the all-sky 
DLR estimation in tropical and polar regions where high CF or CWV 
exist. 

We evaluated the GLASS-AVHRR SLWR products using independent 
datasets of in situ observations from globally distributed stations and 
space-based products, including CERES-SYN, ERA5, and GLASS-MODIS. 

The all-sky GLASS-AVHRR SLWR dataset had overall RMSEs of 18.66, 
14.92, and 16.29 Wm− 2 and MBEs of − 2.69, − 3.77, and 0.49 Wm− 2 for 
DLR, ULR, and NLR, respectively. Additionally, the GLASS-AVHRR 
SLWR products had comparable or better accuracies than the CERES- 
SYN, ERA5, and GLASS-MODIS products under most surface and mete-
orological conditions (the exceptions being high CWV in tropical areas). 
The GLASS-AVHRR SLWR products had reasonable spatial distributions 
and good temporal consistency compared with the CERES-SYN and 
ERA5 datasets. We believe that these newly archived products will play 
an important role in climate change studies (e.g., Arctic amplification) 
owing to their long duration (1981–2018), high spatial resolution (5 
km), good internal consistency, and high accuracy. 

However, systematic underestimation in GLASS-AVHRR SLWR 
products occurs in tropical areas. This underestimation is mainly 
attributable to the local overfitting of DesCNN models at high values, 
which is induced by the non-uniform SLWR sample distribution across 
the globe. In future work, we will address this underestimation at high 
values using methods to increase the sample number (data augmenta-
tion, synthetic minority over-sampling) or post-correction of SLWR es-
timates (cumulative distribution function matching). Additionally, 
geostationary satellite observations can be incorporated to further 
improve the accuracy of GLASS-AVHRR SLWR retrievals by providing 
diurnal variation information regarding the surface and atmosphere. 
Finally, an ensemble learning scheme will be adopted to obtain more 
accurate SLWR values by taking full advantage of different neural 
network architectures. 
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