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RESEARCH ARTICLE

A stacking ensemble algorithm for improving the biases of forest aboveground 
biomass estimations from multiple remotely sensed datasets
Yuzhen Zhanga, Jun Maa, Shunlin Liangb, Xisheng Lia and Jindong Liua

aBeijing Engineering Research Center of Industrial Spectrum Imaging, School of Automation and Electrical Engineering, University of Science 
and Technology Beijing, Beijing, China; bDepartment of Geographical Sciences, University of Maryland, College Park, MD, USA

ABSTRACT
Accurately quantifying the aboveground biomass (AGB) of forests is crucial for understanding 
global change-related issues such as the carbon cycle and climate change. Many studies have 
estimated AGB from multiple remotely sensed datasets using various algorithms, but substantial 
uncertainties remain in AGB predictions. In this study, we aim to explore whether diverse 
algorithms stacked together are able to improve the accuracy of AGB estimates. To build the 
stacking framework, five base learners were first selected from a series of algorithms, including 
multivariate adaptive regression splines (MARS), support vector regression (SVR), multilayer 
perceptron (MLP) model, random forests (RF), extremely randomized trees (ERT), stochastic 
gradient boosting (SGB), gradient-boosted regression tree (GBRT) algorithm, and categorical 
boosting (CatBoost), based on diversity and accuracy metrics. Ridge and RF were utilized as the 
meta learner to combine the outputs of base learners. In addition, six important features were 
selected according to the feature importance values provided by the CatBoost, ERT, GBRT, SGB, 
MARS and RF algorithms as inputs of the meta learner in the stacking process. We then used 
stacking models with 3–5 selected base learners and ridge or RF to estimate AGB. The AGB data 
compiled from plot-level forest AGB, high-resolution AGB data derived from field and lidar data 
and the corresponding predictor variables extracted from the satellite-derived leaf area index, 
net primary production, forest canopy height, tree cover data, and Global Multiresolution Terrain 
Elevation Data 2010, as well as climate data, were randomly split into groups of 80% for training 
the model and 20% for model evaluation. The evaluation results showed that stacking generally 
outweighed the optimal base learner and provided improved AGB estimations, mainly by 
decreasing the bias. All stacking models had relative improvement (RI) values in bias of at least 
22.12%, even reaching more than 90% under some scenarios, except for deciduous broadleaf 
forests, where an optimal algorithm could provide low biased estimations. In contrast, the 
improvements of stacking in R2 and RMSE were not significant. The stacking of MARS, MLP, 
and SVR provided improved results compared with the optimal base learner, and the average RI 
in R2 was 3.54% when we used all data without separating forest types. Finally, the optimal 
stacking model was used to generate global forest AGB maps.
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1. Introduction

Accurately quantifying the aboveground biomass 
(AGB) of forests is crucial for understanding global 
change-related issues, such as the carbon cycle and 
climate change (Houghton, Hall, and Goetz 2009). In 
recent decades, many studies have estimated forest 
AGB from optical images, synthetic aperture radar 
(SAR), and light detection and ranging (LiDAR) data 
at local or regional scales (Lu et al. 2016; Zolkos, 
Goetz, and Dubayah 2013; Wulder et al. 2012; 
Neumann et al. 2012). However, large uncertainties 
remain in existing forest AGB maps (Saatchi et al. 
2011; Baccini et al. 2012; Mitchard et al. 2013).

To improve the accuracy of AGB predictions, recent 
efforts have concentrated on building ground-based 
forest observation systems (Chave et al. 2019) and 
providing new remotely sensed data sources, such 
as the Global Ecosystem Dynamics Investigation 
LiDAR and the European Space Agency P-band radar 
(Carreiras et al. 2017; Qi et al. 2019), and the integra-
tion of multisource remotely sensed data (Zhang and 
Liang 2020; Luo et al. 2019; Kattenborn et al. 2015). In 
addition, data-driven machine learning algorithms 
have been developed, along with an increasing num-
ber of remote sensing observations, and their perfor-
mance in estimating AGB has been explored (Gleason 
and Im 2012; López-Serrano et al. 2016; de Almeida 

CONTACT Yuzhen Zhang yzhang@ustb.edu.cn

GISCIENCE & REMOTE SENSING                         
2022, VOL. 59, NO. 1, 234–249 
https://doi.org/10.1080/15481603.2021.2023842

© 2022 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.  
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, 
distribution, and reproduction in any medium, provided the original work is properly cited.

http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/15481603.2021.2023842&domain=pdf&date_stamp=2022-01-28


et al. 2019). However, each algorithm has its own 
scope of application, and no algorithm has good 
performance in all situations (Wang, Wu, and Mo 
2013). There is on the pursuit for the most robust 
algorithms which are appropriate for forest AGB esti-
mation or mapping, particularly at large scales.

Rather than selecting the single best model to esti-
mate land surface parameters from remotely sensed 
data, ensemble algorithms combine the advantages of 
multiple learners, leading to an improved prediction 
accuracy (Zhang et al. 2020; Mendes-Moreira et al. 
2012). Currently, ensemble algorithms used for estimat-
ing forest AGB are mainly homogeneous ensemble algo-
rithms that aggregate results from the same algorithm, 
such as tree-based bagging represented by random 
forests (RF) and boosting represented by stochastic gra-
dient boosting (SGB), gradient-boosted regression tree 
(GBRT) algorithms, categorical boosting (CatBoost), and 
extreme gradient boosting (XGBoost) regression algo-
rithms (Breiman 2001; Belgiu and Drăguţ 2016; Friedman 
2001, 2002; Huang et al. 2019). Bagging generates boot-
strap samples from the original datasets to train weak 
decision tree models and then averages the outputs to 
obtain final predictions, which reduces the prediction 
variance (Yang et al. 2010), whereas boosting converts 
weak learners to strong learners by increasing the 
weights of samples with higher prediction errors in the 
following iteration, thereby gradually improving the pre-
diction accuracy by decreasing the bias (Bühlmann and 
Hothorn 2007). It has been widely demonstrated that 
a series of bagging and boosting algorithms outper-
formed individual learning algorithms in estimating for-
est AGB (Zhang et al. 2020; Li et al. 2020). However, 
heterogeneous ensemble algorithms, which can com-
bine diverse learners, including both individual algo-
rithms and homogeneous ensemble algorithms 
mentioned above, thus providing better prediction 
results (Healey et al. 2018; Naimi and Balzer 2018), are 
still in its infancy in the field of forest AGB estimation.

In this study, we aim to explore the potential of the 
heterogeneous stacking ensemble algorithms for 
improving the accuracy of AGB estimation from multi-
ple remote sensing datasets and in particular, address 
whether and to what extent the stacking algorithm 
can improve AGB predictions relative to homoge-
neous ensemble algorithms or optimal individual 
algorithms.

The stacking algorithm is also known as stacked 
generalization or super learning, which was first pro-
posed by Wolpert (1992) and formalized by Breiman 
(1996). Generally, stacking has a two-layer structure in 
which the meta-model (level-1 model) in the second 
layer is used to combine the outputs of base learners 
(level-0) in the first layer. Until now, stacking has been 
applied to map forest changes (Healey et al. 2018), 
estimate daily average PM2.5 concentrations (Zhai 
and Chen 2018), forecast short-term electricity con-
sumption (Divina et al. 2018), and improve the spatial 
interpolation accuracy of daily maximum air tempera-
ture (Cho et al. 2020) due to its superior performance 
by improving generalization ability in comparison 
with single algorithms. Previous studies have sug-
gested that the success of a stacking model depends 
on the accuracy and the diversity of base learners 
(Nath and Sahu 2019; Naimi and Balzer 2018). Using 
stacking to combine multiple diverse base learners 
that can effectively compensate for each other’s 
inadequacies is assumed to improve predictions rela-
tive to base learners (Tyralis et al. 2019). Therefore, the 
choice of suitable base learners is a critical issue of 
stacking. Most studies have evaluated the models 
based solely on accuracy, whereas diversity has not 
been quantified properly (Wang, Lu, and Feng 2020). 
In this study, we selected base learners based on 
accuracy and diversity. Moreover, we investigated 
how the performance of stacking in estimating AGB 
was affected by the selected base learners and their 
combinations with meta learners, which was also 
the second objective of this study. The optimal stack-
ing model was finally used to generate forest AGB 
map at a global scale.

2. Data and Methods

2.1. Field AGB

The forest AGB were inherited from one of our pre-
vious studies (Zhang et al. 2020). They were compiled 
from plot-level forest AGB and high-resolution AGB 
data derived from field data and lidar data. We col-
lected plot-level AGB measured during the period 
2000–2010 from published literature and online data-
bases. The plots were mainly located in mature or 
primary forests with minimal human disturbance 
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(Zhang and Liang 2020). To ensure the representative-
ness of these plot measurements to forest conditions 
and to reduce the potential error in data geolocation, 
collected plots of less than 0.05 ha in size were filtered 
out (Keeling and Phillips 2007; Bouvet et al. 2018). The 
remaining plot-level AGB were aggregated to a 0.01° 
spatial resolution. Moreover, the mismatches in spatial 
scales between field plots and pixels of remotely 
sensed data may lead to uncertainties of forest AGB 
estimation, particularly when forest AGB shows strong 
local spatial variation (Réjou-Méchain et al. 2014). 
Therefore, we assessed the homogeneity and repre-
sentativeness of reference AGB data using the coeffi-
cient of variation (CV) of tree cover (Hansen et al. 2013) 
within each 0.01° cell and removed the reference AGB 
data with a corresponding CV value larger than 1.0. Six 
high-resolution AGB data, which were derived from 
field AGB and lidar and had spatial resolutions finer 
than 100 m, were also used as reference AGB data. We 
reprojected these AGB maps to the geographical coor-
dinate system and then aggregated them to the 0.01° 
scale. More details could be found in one of our pre-
vious papers (Zhang and Liang 2020).

A total of 12,376 AGB samples were generated from 
plot-level AGB and high-resolution AGB maps. They 
were spatially distributed in evergreen needleleaf for-
ests (ENF), evergreen broadleaf forests (EBF), deciduous 
broadleaf forests (DBF), mixed forests (MF), woody 
savannas (WSA), and savannas (SAVs) according to 
the MODIS Land Cover Type Product (MCD12Q1, ver-
sion 6) for 2005 (Sulla-Menashe et al. 2019).

2.2. Input data collection

Remotely sensed data for AGB prediction were mainly 
the Leaf Area Index (LAI) product (Xiao et al. 2014) 
from the Global LAnd Surface Satellites (GLASS) pro-
duct suite (Liang et al. 2021), forest canopy height 
retrieved from Geoscience Laser Altimeter System 
(GLAS) data (Simard et al. 2011), MODIS Net Primary 
Production (NPP) product (Running and Zhao 2019), 
tree cover data (Hansen et al. 2013), and Global 
Multiresolution Terrain Elevation Data 2010 
(GMTED2010) (Danielson and Gesch 2011). Climate 
data from WorldClim2 (Fick and Hijmans 2017), and 
changes in temperature and precipitation based on 
climatic research unit gridded dataset (Harris et al. 
2014), were also included for AGB estimation.

2.2.1. GLASS LAI data
The LAI product selected was the GLASS LAI product 
at 8-day and 1 km resolution. It was derived from the 
reprocessed MODIS reflectance time-series data using 
a general regression neural network algorithm that 
was trained with the combined time-series LAI from 
the MODIS and CYCLOPES LAI products and provided 
in a sinusoidal projection (Liang et al. 2013; Xiao et al. 
2014). Previous studies suggested that the GLASS LAI 
product is more accurate and temporally continuous 
than other LAI products, such as MODIS LAI and 
Geoland2 LAI (Li et al. 2018; Xiao et al. 2014, 2016).

We reprojected the 8-day GLASS LAI data from 
2001 to 2010 to the WGS 84 geographical coordinate 
system and averaged them to the monthly scale. The 
maximum LAI for the year 2005 and the interannual 
variation in LAI from 2001 to 2010 characterized by 
the CV (LAI-CV) were used as predictors of forest AGB.

2.2.2. Global canopy height map
The global canopy height (CH) map obtained from 
Geoscience Laser Altimeter System (GLAS) data by 
Simard et al. (2011) were used. GLAS waveforms 
located in areas of slopes below 5 degrees and with 
bias correction of lower than 25% of the measured 
RH100 and within forested areas according to the 
GlobCover map were preserved to produce the global 
CH map. We resampled the CH map at 1-km resolu-
tion to 0.01° using the nearest neighbor method.

2.2.3. MODIS NPP data
The annual MOD17A3HGF (version 6) data at 500 m 
resolution were obtained from the Land Processes 
Distributed Active Archive Center (https://lpdaac. 
usgs.gov/products/mod17a3hgfv006) (Running and 
Zhao 2019). Consistent with the preprocessing of LAI 
data, we reprojected the data from 2001 to 2010 to 
the WGS84 geographic coordinate system and aggre-
gated them to 0.01°. Annual NPP data for 2005 and 
the CV of NPP from 2001 to 2010 (NPP-CV) served as 
predictors of forest AGB.

2.2.4. Global tree cover product
The global forest cover map used in this study was 
provided by Hansen et al. (2013) and had a 30-meter 
spatial resolution. For consistency with other datasets, 
the 30-meter data were aggregated to a 0.01° resolu-
tion. The mean and standard deviation of tree cover 
within each 0.01° cell (TC-Mean, TC-Std) were 
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calculated for prediction of forest AGB. Additionally, 
the aggregated map served as the base map of global 
tree cover; forests and shrublands with tree cover > 
10% were considered forest pixels, while other pixels 
were masked (Schmitt et al. 2009).

2.2.5. Topographical and climatic data
The Global Multi-resolution Terrain Elevation Data 
2010 (GMTED2010) suite contains raster elevation 
products at 30, 15, and 7.5 arc-second spatial resolu-
tions. The DEM and slope information were derived 
from GMTED2010 data at a 30 arc-second spatial 
resolution (Danielson and Gesch 2011).

Climate variables used for AGB estimation included 
the annual mean temperature (Temp) and precipita-
tion (Prec) from the WorldClim2 dataset (Fick and 
Hijmans 2017), as well as changes in annual tempera-
ture (TempChg) and changes in precipitation 
(PrecChg) calculated by standardizing the Climatic 
Research Unit (CRU) gridded temperature and preci-
pitation data during the period 2001–2010 to the 
baseline period 1971–2000 (Harris et al. 2014).

2.3. Stacking ensemble learning algorithm

The stacking ensemble learning framework for esti-
mating forest AGB is shown in Figure 1. In the two- 
layer stacking structure, the first layer included n base 

learners, and the second layer used a linear or non-
linear algorithm called a meta learner to combine the 
predictions of base learners. All data were randomly 
split into training data (80%) and test data (20%). The 
training data were further divided into five folds. In 
each of the five iterations, four folds were chosen for 
training base learners, whereas the remaining folds 
were held out for AGB prediction. The five-fold cross- 
validated predictions were called meta-features and 
served as input variables of the meta learner. When 
original features were not included in the stacking, 
the number of variables for training the meta learner 
equaled the number of base learners. The base lear-
ners were then refitted using all training data, and the 
refitted models were applied to the test data to gen-
erate meta-features or inputs of the meta learner. 
Final AGB predictions were obtained by a meta lear-
ner, and their accuracies were evaluated based on test 
data. To reduce the impacts of random splitting on 
the evaluation results, the above procedures were 
repeated 50 times.

In this study, in addition to the evaluation of stack-
ing using all data, we examined the performance of 
stacking models in estimating forest AGB for four 
forest types that had more than 1000 AGB samples, 
including EBF, DBF, WSA and SAV.

Figure 1. Framework of stacking ensemble procedures for estimating forest AGB.
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2.3.1. Base learners
The multivariate adaptive regression splines (MARS), 
support vector regression (SVR), multilayer percep-
tron (MLP) model, RF, extremely randomized trees 
(ERT) model, GBRT, SGB, and CatBoost regression 
algorithms were used as candidate base learners.

Since the combinations of base learners with high 
accuracy and diversity could maximize the general-
ization accuracy (Zhou 2009; Bin et al. 2020; Fan, Xiao, 
and Wang 2014), we selected CatBoost as one base 
learner due to its demonstrated better performance 
than the other candidate base learners (Zhang et al. 
2020). The diversity among base learners was mea-
sured using Spearman’s rank correlation coefficient. 
Prediction errors of base learners had a lower correla-
tion or even they were uncorrelated, suggesting that 
these learners skilled differently and thus corre-
sponded to a higher diversity (Ma and Dai 2016). 
Afterward, we calculated the average of Spearman’s 
rank correlations among eight candidate base lear-
ners for 50 runs based on the prediction results from 
Zhang et al. (2020) and then selected the base learner 
with the lowest correlation with the CatBoost model 
as the second base learner. Similarly, the third base 
learner had the lowest mean correlation with the first 
two base learners. Through repeating the process, the 
remaining base learners were gradually added into 
the stacking model.

In addition, some studies have suggested that a few 
base learners instead of all available learners should be 
stacked together, and 3 or 4 base learners might be 
optimal (Zhou, Wu, and Tang 2002; Breiman 1996; Cho 
et al. 2020). Therefore, we attempted to stack 3–5 base 
learners and examined their performance for AGB esti-
mation. The order of base learners selected under each 
forest type scenario is shown in Table 1. The stacking 
model with 3 base learners indicates that the first 3 
learners were combined, and similarly, stacking with 5 
base learners indicates that the first 5 base learners 
were used. Under all these scenarios, at least one 
homogeneous ensemble algorithm was selected as 

the base learners. To fully explore the stacking perfor-
mance, we also used three individual learners, MARS, 
MLP, and SVR, as base learners, similar to many ensem-
ble algorithms, and assessed the performance of asso-
ciated stacking models in estimating forest AGB.

2.3.2. Meta learners
Simple linear models such as ridge and lasso regression 
are often used as the meta model, and they can provide 
a smooth interpretation of the predictions of base mod-
els (Cho et al. 2020). In this study, we also included ridge 
and lasso as meta learners in stacking. Additionally, 
original features that might improve the prediction 
results were incorporated as well (Pernía-Espinoza et al. 
2018). RF and MLP could capture the nonlinear relation-
ships between original features and forest biomass and 
were thus employed as meta learners in this study 
(Healey et al. 2018). We ranked the original features or 
variables used to train the base learners by feature 
importance values provided by the CatBoost, ERT, 
GBRT, SGB, MARS and RF algorithms (Zhang et al. 
2020) and used six important features as additional 
inputs of the meta learner in stacking models. The 
selected original features under different scenarios are 
shown in Table 1.

Moreover, we initially tested the performance of 
ridge, lasso, MLP and RF algorithms as meta learners 
and found that lasso and MLP provided better predic-
tion results than ridge and RF (Nath and Sahu 2019). 
Therefore, the ridge and RF were chosen as meta 
learners of stacking, and their performance in estimat-
ing AGB, when combined with different base learners, 
was explored (Table 1).

2.4. Forest AGB mapping

To further explore the performance of stacking mod-
els in AGB estimation, we generated the global forest 
AGB maps based on the optimal stacking model 
(Stacking AGB) and optimal base learner (CatBoost 
AGB), respectively, and then compared the spatial 

Table 1. Selected base learners, meta learner, and original features for stacking under five scenarios.
Forest type Base learners (from 1st – 5th) Selected original features Meta learner

All CatBoost, MARS, MLP, GBRT, SVR TC-Mean, CH, Temp, Prec, TC-Std, NPP Ridge, RF
EBF CatBoost, MLP, MARS, GBRT, SVR TC-Mean, Prec, DEM, Temp, NPP, CH Ridge, RF
DBF CatBoost, MARS, GBRT, MLP, SVR TC-Mean, Prec, Temp, DEM, NPP, TempChg Ridge, RF
WSA CatBoost, MARS, SVR, GBRT, MLP TC-Mean, Prec, Temp, DEM, NPP, TempChg Ridge, RF
SAV CatBoost, MARS, MLP, GBRT, SVR TC-Mean, Prec, NPP, DEM, Temp, TempChg Ridge, RF

EBF, evergreen broadleaf forest; DBF, deciduous broadleaf forest; WSA, woody savanna; and SAV, savanna.
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distribution of Stacking AGB with two other AGB 
maps including CatBoost AGB and global AGB map 
generated by fusion of multiple biomass maps 
(Fusion AGB) (Zhang and Liang 2020).

2.5. Accuracy assessment

Common metrics, including R2 value, root mean 
square error (RMSE), and bias, were used to evaluate 
the accuracy of AGB predictions. They were calcu-
lated as: 

R2 y; ŷð Þ ¼ 1 �
PN

i¼1 yi � ŷið Þ
2

PN
i¼1 yi � �yð Þ

2 (1) 

RMSE y; ŷð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PN

i¼1 yi � ŷið Þ
2

N

s

(2) 

bias y; ŷð Þ ¼

PN
i¼1 yi � ŷið Þ

N
(3) 

where y represents the reference AGB, �y denotes the 
mean value of the reference AGB, ŷ is the predicted 
AGB using the models, and N is the number of sam-
ples. The model with higher R2 value and lower RMSE 
and bias is preferred for AGB estimation.

In addition, the relative improvement (RI) in stack-
ing performance for AGB estimation compared with 
the optimal base learner was quantified (Sun and Li 
2020). 

IR2 ¼
R2

s � R2
b

R2
b
� 100% (4) 

IRMSE ¼
RMSEb � RMSEs

RMSEb
� 100% (5) 

Ibias ¼
biasbj j � biassj j

biasbj j
� 100% (6) 

where IR2 , IRMSE , and represent the RI in R2, RMSE, and 
bias, respectively. The subscript s represents the 
stacking model, and b indicates the base learner.

3. Results

3.1. Performance of stacking models for forest AGB 
estimation

The average R2, RMSE, and bias values of the five base 
learners and different stacking models obtained over 
50 runs using all data are shown in Table 2. The 
CatBoost model outweighed the other base learners 
for AGB prediction and achieved an accuracy with an 
R2 value of 0.70, RMSE of 47.19 Mg/ha and bias of 
0.12 Mg/ha, which was the benchmark for evaluating 
the relative performance of stacking models in which 
CatBoost was contained. Similarly, MLP had an overall 
better performance than MARS and SVR and was 
therefore used to evaluate the RI of stacking in 
which the first layers were MARS, MLP, and SVR.

Consistent with some previous studies, the results 
of this study indicated that the incorporation of origi-
nal features in stacking slightly improved the esti-
mates (Pernía-Espinoza et al. 2018), mainly by 
decreasing RMSE. Moreover, stacking using the RF 
model and original features (RFOri) provided a more 
accurate estimation than stacking with ridge and ori-
ginal features (Table 2). In contrast, the stacking using 
ridge as a meta learner provided more accurate 
results than stacking using the RF model when origi-
nal features were not considered inputs of the meta 
learner. Therefore, the RI shown in Table 2 for ridge- 

Table 2. Model assessments in R2, RMSE and bias.

Model

Meta-features Meta- and original features Relative improvement (%)

R2 RMSE(Mg/ha) Bias(Mg/ha) R2 RMSE(Mg/ha) Bias(Mg/ha) R2 RMSE Bias

CatBoost 0.70 47.19 0.12 − − − − − −
GBRT 0.69 48.01 0.07 − − − − − −
MLP 0.62 53.43 −0.56 − − − − − −
MARS 0.53 59.39 0.27 − − − − − −
SVR 0.59 55.17 3.09 − − − − − −
CatBoost + MARS + MLP (Ridge) 0.70 47.22 0.06 0.70 47.21 0.06 −0.05 −0.05 49.80
CatBoost + MARS + MLP (RF) 0.68 48.84 0.09 0.70 47.07 0.08 0.22 0.26 35.17
MARS + MLP + SVR (Ridge) 0.64 51.90 0.05 0.64 51.87 0.04 3.54 2.87 91.50
MARS + MLP + SVR (RF) 0.61 53.57 −0.02 0.67 49.44 0.04 8.96 7.46 92.70
CatBoost + MARS + MLP + GBRT (Ridge) 0.70 46.95 0.09 0.70 46.95 0.09 0.42 0.50 22.95
CatBoost + MARS + MLP + GBRT (RF) 0.69 47.93 0.11 0.70 46.82 0.13 0.66 0.78 −6.48
CatBoost + MARS + MLP + GBRT + SVR (Ridge) 0.70 46.96 0.09 0.70 46.96 0.09 0.40 0.48 22.12
CatBoost + MARS + MLP + GBRT+ SVR (RF) 0.69 47.66 0.10 0.70 46.85 0.13 0.62 0.72 −10.46
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related stacking models was based on the ridge lear-
ner without original features, and the RI for RF-related 
models was based on RFOri.

RFOri produced the most accurate estimates of for-
est AGB for all combinations of base learners, whereas 
the performance of the ridge model, ridge model with 
original features, and RF model without original fea-
tures was slightly worse in terms of R2 and RMSE 
(Table 2 and Figure 2). Furthermore, the stacking 
using RFOri obtained a more accurate estimation of 
forest AGB than the optimal base learner, suggesting 
that stacking could improve the AGB estimation from 
multiple remote sensing datasets. For the base learner 
combination, MLP, MARS, and SVR, stacking using 
RFOri improved the estimation by 8.96%, 7.46% and 
92.70% in terms of R2, RMSE, and bias, respectively. 

However, when four or five base learners were used, 
we found that stacking using RFOri produced larger 
bias than the other stacking models (Table 2).

With meta-features alone, stacking models using 
the ridge model as the meta learner provided better 
results than those based on RF, as well as the optimal 
base learner, despite being less accurate than stack-
ing models using RFOri (Figure 2). The maximum RI 
was 3.54% for R2 and 2.87% for RMSE, achieved by 
stacking using MARS, MLP, and SVR as base learners. 
For bias, the average RI was more than 22.12%, which 
suggested that stacking could improve the estimates, 
particularly by reducing the bias. Using CatBoost, 
MARS, and MLP as base learners, stacking obtained 
similar results to the CatBoost model in terms of R2 

and RMSE but decreased the bias by 49.8% (Table 2).

Figure 2. Comparing the performance of stacking using ridge (Ridge) and stacking using RF, as well as original features (RFOri) with 
those obtained by the optimal base learner.
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Either using ridge or RFOri as the meta model, the 
stacking of MARS, MLP, and SVR significantly 
improved the results relative to the best base learner 
(Figure 2). This was consistent with the viewpoint that 
base learners should be mediocre learners, with an 
average performance of approximately 0.5–0.6; there-
fore, ensemble learners were better than the best 
base learners (Lasisi and Attoh-Okine 2019). For the 
stacking models containing CatBoost, which was 
a strong base learner, the results were slightly better 
than the optimal base learner; however, they did not 
suggest that stacking models using strong base lear-
ners should not be used since they could significantly 
improve the bias of estimates (Table 2).

3.2. Performance of stacking for different forest 
types

For all forest types, including EBF, DBF, WSA, and SAV, 
CatBoost remained the optimal base learner, while 
the SVR predictions were generally better than the 
MARS and MLP for AGB predictions. Figure 3 shows 
the average R2, RMSE and bias achieved by stacking 
using ridge as the meta learner for 50 runs, and 
Figure 4 shows the boxplot of R2, RMSE and bias for 
50 runs. The results suggested that stacking MARS, 
MLP, and SVR improved the AGB estimation with 
increases in R2 and decreases in RMSE and bias. The 
average RI in R2 was 4.68% for EBF, 4.56% for DBF, 
4.07% for WSA, and 4.68% for SAV (Figure 3 and 
Figure 4). In contrast, the stacking model in which 
CatBoost was one of the base learners obtained simi-
lar results to the optimal base learner CatBoost, indi-
cating that stacking did not significantly improve the 
results in terms of R2 and RMSE. However, all stacking 
models provided less biased AGB prediction than 
CatBoost and SVR, which confirmed that stacking 
improved the estimation by reducing the bias.

For EBF, all stacking models improved the perfor-
mance in terms of the R2, RMSE, and bias values 
compared with the optimal base learner, and the 
improvement was slightly different with the number 
of base learners used. When 3 base learners were 
included in stacking, the RI in R2, RMSE, and bias 
were 0.22%, 0.13%, and 89.93%, respectively. 
Stacking using 5 base learners had RIs in R2, RMSE, 
and bias of 1.00%, 0.59%, and 87.36%, respectively. 
The combination of four base learners, including 
CatBoost, MARS, MLP, and GBRT, had the best 

performance in terms of R2 and RMSE (Figure 4). 
For DBF and WSA, CatBoost performed better than 
EBF, with a relatively larger R2 and lower RMSE and 
a particularly lower bias. Under this condition, the 
stacking of CatBoost and other base learners did not 
lead to improved results except that stacking pro-
vided lower biased results in WSA (Figure 3 and 
Figure 4). The estimated results tended to become 
worse as the number of base learners used in stack-
ing increased (Figure 4). These results indicated that 
when bias achieved by an algorithm was low, stack-
ing of several learning algorithms might not be use-
ful for further improving the accuracy of AGB 
estimation. For SAV, all base learners were weak 
learners with an R2 of less than 0.48, and stacking 
indeed improved the results. With more base lear-
ners, the improvement of the stacking model in 
estimating forest AGB was greater. The bias 
decreased from 0.73 achieved by CatBoost to 0.06 
achieved by stacking with five base learners, with an 
RI of 91.89%.

Despite the large differences in the performance of 
stacking models for different forest types, the combi-
nation of MARS, MLP, and SVR using stacking greatly 
improved the results compared with the optimal base 
learner SVR.

3.3. Global forest AGB maps generated using 
stacking

Based on the optimal stacking model (CatBoost + 
MARS + MLP + GBRT (Ridge) in Table 2) and base 
learner CatBoost, global AGB maps were generated 
for the 2000s from multiple remotely sensed data 
(Figure 5). The Stacking AGB map showed that tropi-
cal and subtropical forests stocked the most carbon in 
AGB per hectare, whereas the carbon stocks were 
lower in boreal and temperate forests. Compared 
with CatBoost AGB, Stacking AGB was higher in 
most regions with high biomass values and almost 
lower in regions with low biomass values, which sug-
gested that stacking provided more reasonable AGB 
maps than optimal base learner. However, the differ-
ence in the spatial distribution of Stacking AGB and 
Fusion AGB was evident. Fusion AGB provided higher 
AGB in Oceania and Africa.

Figure 6 showed the estimated Stacking AGB, 
CatBoost AGB, and Fusion AGB values for different 
forest types. The results suggested that the three 
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AGB maps, particularly Stacking AGB and CatBoost 
AGB, had similar statistical distributions for all forest 
types. Estimated AGB values in EBF were larger than 
those in ENF, DBF, MF, WSA, and SAV. Compared with 
the AGB difference obtained by subtracting the 
CatBoost AGB from Stacking AGB, AGB differences 
between Stacking AGB and Fusion AGB were larger 
(Figure 6). However, the median values of AGB 

difference between CatBoost and Stacking AGB were 
5.86 Mg/ha for ENF, 3.99 Mg/ha for EBF, 1.62 Mg/ha 
for DBF, 4.68 Mg/ha for MF, 1.92 Mg/ha for WSA, and 0 
Mg/ha for SAV. The median values of AGB difference 
between Fusion and Stacking AGB were −3.82 Mg/ha, 
−5.13 Mg/ha, 7.20 Mg/ha, −0.78 Mg/ha, 3.28 Mg/ha, 
and 2.80 Mg/ha for ENF, EBF, DBF, MF, WSA, and SAV, 
respectively.

Figure 3. Performance of stacking in estimating AGB in terms of R2, RMSE, and bias for EBF, DBF, WSA, and SAV.
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4. Discussion

In recent decades, many studies have exploited com-
plementary information from multiple remotely sensed 
data to improve AGB estimation. However, the effect of 
taking the advantage of diverse algorithms on the 
accurate estimation of forest AGB remains underex-
plored. In this study, we integrated several machine 
learning algorithms using stacking to estimate AGB 
from multiple satellite-derived data products. The 
results of this study showed that stacking models 
could generally improve the accuracy of AGB predic-
tions, by greatly reducing the bias of estimates and 
slightly improving the R2 and RMSE values. Therefore, 
if the main objective is to reduce the bias of estimates, 
such as for the retrieval of land surface parameters 

from satellite-derived data, stacking provides an effec-
tive way to achieve the goal. However, when the bias 
achieved by an optimal algorithm is low (e.g. DBF), the 
prediction accuracy cannot be further improved by 
stacking. In this situation, the base model rather than 
the stacking model should be used given its lower 
complexity (e.g. simple to train and interpret). 
Homogeneous ensemble methods such as RF and gra-
dient boosting tree-base algorithms that have higher 
prediction performances may be considered (Güneralp, 
Filippi, and Randall 2014; Mutanga, Adam, and Cho 
2012; Zhao et al. 2019).

The base learner combination, MARS, MLP, and SVR, 
obtained much better improvement compared with 
the results obtained by stacking using CatBoost as 

Figure 4. Boxplots depicting the relative improvement in R2, RMSE, and bias achieved by stacking for AGB estimation in EBF, DBF, 
WSA, and SAV.
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one of the base learners, suggesting the necessity to 
consider ensemble algorithms for improvement of pre-
diction accuracy. However, it should be noted that the 
stacking of MARS, MLP, and SVR still provided less 
accurate results than the homogeneous CatBoost 
model. This was partly because stacking was a way to 
fuse information or add information to estimation, not 
an intrinsically motivated algorithm. More advanced 
algorithms, such as deep learning, remains worth 
investigating in future studies (Reichstein et al. 2019).

Previous studies have suggested that the appropri-
ate selection of base learners is important for stacking 
models. In this study, we used the correlation of pre-
diction error to quantify diversity and to further select 
base learners. Some metrics, such as covariance, 

dissimilarity measure, chi-square measure and mutual 
information, could be used to measure the diversity of 
base learners in stacking in future studies (Dutta 2009). 
Some studies have selected base learners based on 
their differences in algorithm principles (Wang, Lu, 
and Feng 2020). However, this should not greatly affect 
the results, since several combination strategies used in 
this study were consistent with the selection in princi-
ple (e.g. MARS + MLP + SVR, CatBoost + MARS + MLP, 
and CatBoost + MARS + SVR in Table 2). To fully explore 
the feasibility of stacking for global forest AGB map-
ping, we generated AGB maps using the optimal stack-
ing model on a global scale. Comparison results 
showed that stacking AGB was generally close to 
CatBoost AGB, with an AGB difference of less than 

Figure 5. Spatial distributions of Stacking AGB for the 2000s (a), and difference maps obtained by subtracting the CatBoost AGB (b) 
and Fusion AGB (c) from Stacking AGB. Masked pixels denote areas with less than 10% forest cover.
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20 Mg/ha in most forest regions. Due to the urgent 
need to improve forest AGB estimation on regional and 
global scales, many studies have integrated multi-
source remotely sensed data by using various machine 
learning algorithms. Two typical examples were forest 
AGB maps covering tropical regions produced by 
Saatchi et al. (2011) based on the MaxEnt algorithm 
and by Baccini et al. (2012) based on the RF algorithm, 
which were also used by Liu et al. (2015) to generate 
global forest AGB maps by establishing the relation-
ships between AGB and vegetation optical depth, and 
by Carvalhais et al. (2014) to calculate turnover times of 
carbon in terrestrial ecosystems. The existing AGB 
maps were almost produced by a specific algorithm 
rather than an ensemble of several algorithms. As sug-
gested by Figure 5, the estimated AGB based only on 
CatBoost and that based on an ensemble of several 
algorithms under the stacking framework were differ-
ent in both magnitude and spatial distribution, which 
indicated the uncertainties associated with the AGB 
modeling algorithms and the necessity to examine 
the uncertainties in future studies of AGB estimation 
or mapping. In our previous studies, systematic 

comparisons of existing regional and global forest 
AGB maps covering different continents (Zhang, 
Liang, and Yang 2019) and a detailed comparison of 
several global AGB maps (Zhang and Liang 2020) were 
performed. The results revealed large discrepancies in 
current AGB maps, which could be from field biomass, 
the choice and quality of remotely sensed data, and the 
highlighted uncertainties of AGB modeling algorithms.

5. Conclusion

In recent decades, many studies have estimated forest 
AGB by fusing multiple remotely sensed data using 
various algorithms. However, integrating several algo-
rithms to improve AGB estimation has rarely been 
investigated. In this study, we examined the perfor-
mance of the stacking ensemble algorithm, which can 
combine diverse learners, in estimating forest AGB 
from multiple remotely sensed datasets. Based on the 
diversity measured by Spearman’s rank correlation 
coefficient of prediction errors achieved by base lear-
ners, as well as accuracy, we selected five base learners 
and used a combination of 3–5 base learners with 

Figure 6. Boxplot showing the AGB estimated by CatBoost, Stacking and Fusion (a) and AGB difference obtained by subtracting the 
CatBoost AGB and Fusion AGB from Stacking AGB (b) for different forest types.
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ridge and RF to estimate AGB. The evaluation results 
showed that the stacking model generally outweighed 
the optimal base model and improved the prediction 
results, particularly by decreasing the bias, and stack-
ing using the RF model as the meta learner and impor-
tant original features as inputs of the meta learner 
provided the most accurate estimation. However, it 
could lead to larger biased estimates with an increase 
in the number of base learners included in the stacking 
structure. In terms of R2 and RMSE, only slight improve-
ment of stacking in the prediction accuracy was found. 
The stacking of MARS, MLP, and SVR provided greatly 
improved results compared with the optimal base 
learner. The average RI in R2 was 3.54% when we 
used all datasets without separating forest types, and 
the average RI in R2 was 4.68% for EBF, 4.56% for DBF, 
4.07% for WSA, and 4.68% for SAV. All stacking models 
had an RI bias of at least 22.12%, or even reaching 
more than 90% under some scenarios, except for DBF, 
where an optimal algorithm could provide low biased 
results. The results of this study demonstrated the 
capability of the stacking ensemble algorithm in redu-
cing the bias in estimating AGB. In future studies, 
stacking could be utilized to retrieve AGB or other 
biophysical parameters from remotely sensed data if 
decreasing the bias was the main objective.
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