

基于遥感数据的全球CO₂施肥效应 时空变化格局研究

王松寒等

2022年05月06日

录

2. 基于遥感数据的全球GPP数据

3. 全球CO₂施肥效应时空变化格局

■ CO₂浓度增长是全球变暖的主因之一

Temperature Change in the Last 50 Years (2014-2018 Average vs 1951-1980 Baseline)

工业革命以来,地球表面的 平均温度上升了约1.41℃

大气中CO₂浓度的快速上升 ,是工业革命以来全球变暖 的主要原因之一

CO₂浓度的增长可以提高陆地碳汇

Global Carbon Budget 2018

CO₂浓度增加可以导致植被 生产力的上升(即CO₂施肥 效应),从而减缓全球变暖 陆地生态系统是目前全球碳 循环中最大的碳汇途径,占 总碳汇量的30%以上

1 研究背景及意义

CO_2 施肥效应的机理

C₃植被:净光合作用速率的上升和水分利用效率的提升 C₄植被:水分利用效率的提升

1 研究背景及意义

I CO₂施肥效应控制全球陆地碳汇的增长趋势

1 研究背景及意义

■ 研究意义

近四十年全球CO₂施肥效应的 时空变化格局是什么?

录 Ħ

2. 基于遥感数据的全球GPP数据

2 GPP数据: NIRv-GPP

https://data.tpdc.ac.cn/zh-hans/data/d6dff40f-5dbd-4f2d-ac96-55827ab93cc5

2 GPP数据: GIMMS GPP

LETTERS

PUBLISHED ONLINE: 7 DECEMBER 2015 | DOI: 10.1038/NCLIMATE2879

nature climate change

Large divergence of satellite and Earth system model estimates of global terrestrial CO₂ fertilization

W. Kolby Smith^{1,2*}, Sasha C. Reed³, Cory C. Cleveland¹, Ashley P. Ballantyne¹, William R. L. Anderegg⁴, William R. Wieder^{5,6}, Yi Y. Liu⁷ and Steven W. Running¹

Smith et al., 2016

CORRESPONDENCE:

Satellite based estimates underestimate the effect of CO₂ fertilization on net primary productivity

De Kauwe et al., 2016 1982-2016年, monthly, 空间分辨率5 km

2 GPP数据: GLASS GPP

Earth Syst. Sci. Data, 12, 2725–2746, 2020 https://doi.org/10.5194/essd-12-2725-2020 © Author(s) 2020. This work is distributed under the Creative Commons Attribution 4.0 License.

Science

Improved estimate of global gross primary production for reproducing its long-term variation, 1982–2017

Yi Zheng¹, Ruoque Shen¹, Yawen Wang², Xiangqian Li¹, Shuguang Liu³, Shunlin Liang⁴, Jing M. Chen^{5,6}, Weimin Ju^{7,8}, Li Zhang⁹, and Wenping Yuan^{1,10}

¹School of Atmospheric Sciences, Sun Yat-sen University, Zhuhai 519082, Guangdong, China
 ²Key Laboratory of Physical Oceanography, College of Oceanic and Atmospheric Sciences, Ocean University of China, Qingdao, China
 ³College of Life Science and Technology, Central South University of Forestry and Technology (CSUFT), Changsha 410004, Hunan, China
 ⁴Department of Geographical Sciences, University of Maryland, College Park, MD 20742, USA
 ⁵Department of Geography, University of Toronto, Toronto, M5G 3G3 Canada
 ⁶College of Geographical Science, Fujian Normal University, Fuzhou 3500007, Fujian, China
 ⁷International Institute for Earth System Sciences, Nanjing University, Nanjing, China
 ⁸Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing, China
 ⁹Key Laboratory of Digital Earth Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
 ¹⁰Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519000, Guangdong, China

Correspondence: Wenping Yuan (yuanwpcn@126.com)

Received: 19 July 2019 – Discussion started: 7 August 2019 Revised: 12 September 2020 – Accepted: 23 September 2020 – Published: 12 November 2020

Zheng et al., 2020

优势:考虑了CO₂对光能利用率的影响

录 Ħ

2. 基于遥感数据的全球GPP数据

3. 全球CO₂施肥效应时空变化格局

构建用于评估CO₂施肥效应的检测-归因模型

- ➢ 采用多种不同的数据(温度、降水、VPD、土壤水分、辐射等)作 为影响植被GPP的气候及环境因素,分别构建了基于遥感GPP探针数 据提取施肥效应的多元线性模型和多元非线性模型
- ▶ 线性模型: $y=\beta(CO_2)+C_1(Tmax)+C_2(Pre)+C_3+\varepsilon$
- ▶ 非线性模型: $y=\beta(CO_2)+C_1(Tmax)+C_2(Pre)+C_3(CO_2 \cdot Tmax)+C_4(CO_2 \cdot Pre)+C_5 + \varepsilon$

全球CO₂施肥效应的空间分布

- ▶ 基于遥感数据得到的全球CO₂施肥效应的平均值为16.1±11.5% 100 ppm⁻¹,与 FACE实验的结果基本相同(15.5% 100 ppm⁻¹, Ainsworth & Rogers, 2007);
- ▶ 基于EC-LUE GPP数据的全球CO₂施肥效应的平均值为15.2±14.0% 100 ppm⁻¹, 类 似于基于遥感数据和FACE实验的结果;
- ➤ GIMMS GPP的全球施肥效应平均值为9.5±13.6% 100 ppm⁻¹, 显著低于上述两种数据的结果;
 > 基于TRENDY GPP的结果大约为 18.6±9.3% 100 ppm⁻¹,稍高于 基于遥感数据和FACE实验的结 果

- 全球CO₂施肥效应的时间变化趋势
- **滑动窗口分析:** 分别计算1982-1996、1983-1997等直至2001-2015年共计二十个窗口的结果,并计算其时间变化趋势
- ▶ 全球CO₂施肥效应有显著的下降趋势,下降速率为-0.92±0.12% 100 ppm⁻¹ y⁻¹
- ▶ 最后一个15年窗口(2001-2015年),全球CO₂施肥效应的中值为12.9% 100 ppm⁻¹,显著低于第一个窗口(1982-1996年)的全球中值(21.8% 100 ppm⁻¹)

全球CO₂施肥效应的时间变化趋势

- ▶ 基于EC-LUE GPP的全球CO₂施肥效应具 有显著的下降趋势(p<0.01),在近四 十年期间平均以-0.82±0.18% 100 ppm⁻¹ y⁻¹的速率下降;
- ▶ 基于GIMMS GPP的全球CO₂施肥效应同 样有显著的下降趋势(*p*<0.01),在近 四十年期间平均以-0.53±0.10% 100 ppm⁻¹ y⁻¹的速率下降

基于LUE-GPP的结果

全球CO₂施肥效应的时间变化趋势

- ▶ 全球约86%的区域存在着施
 肥效应下降的趋势,其中
 60%为显著下降;
- 下降趋势较大的地区:欧洲、西伯利亚、北美洲西部和南部、南美洲和非洲大部以及澳大利亚西部地区;在少部分地区施肥效应存在着上升的趋势,例如东南亚部分地区和澳大利亚东部地区

全球CO₂施肥效应的下降趋势

基于其他数据的CO₂施肥效应时间变化趋势评估

TRENDY GPP:

▶ 采用2种计算方法计算施肥效应

$$\beta^{t} = \frac{\text{GPP}_{\text{S1}}^{t} - \text{GPP}_{\text{S0}}^{t}}{\text{CO}_{2}^{t} - \text{CO}_{2}^{t_{0}}}$$

- ▶ 12个模型的全球CO₂施肥效应均有 显著的下降趋势,其下降的速率介 于-0.06%和-0.21%之间,多模型的 平均值为-0.12% 100 ppm⁻¹ y⁻¹
- ▶ 全球CO₂施肥效应的下降趋势几乎 没有显著的空间差异

基于TRENDY GPP的结果

原理分析

$$GPP = LAI \times A_n$$

(1) 结构因素: 随着 CO_2 浓度的变化, 植被LAI的变化趋势($\frac{dLAI}{dCa}$) (2) 大气 CO_2 浓度 C_a : 负相关关系

- (3) V_{cmax} (J_{max}):正相关关系 叶片氮磷浓度
- (4) 细胞内与大气CO2浓度的比例: 负相关关系

原因1: 植被结构部分的贡献

- ➢ 采用两种基于遥感数据的全球LAI产品,即GIMMS LAI和GIMMS+MODIS LAI,采用TRENDY LAI进行对比
- ▶ 基于检测-归因模型,估算全球的CO₂施肥效应,并分析其时间变化趋势
- ▶ 基于遥感LAI的施肥效应的下降趋势为-0.59 % 100 ppm⁻¹ y⁻¹; TRENDY LAI的结果为-0.08 % 100 ppm⁻¹ y⁻¹

基于LAI的施肥效应的时间变化趋势

原因2: 施肥效应随大气CO₂浓度增加的饱和效应

- ➢ 基于Farquhar模型模拟了不同大气CO₂浓 度下植被单叶片的光合速率,并计算了 其随CO₂浓度增加的饱和效应
- ▶ 当大气CO₂浓度从300ppm增长到600ppm
 时,植被单叶片光合作用速率显著增加
 ,但是增加的速率有一定的减缓迹象
 ▶ 在不考虑任何外界气候和环境因素影响
- ➤ 在不考虑任何外界气候和环境因素影响 的情况下,随着CO₂浓度的不断增加,其 施肥效应本身就有一定的饱和趋势,其 下降的速率为-0.06 % 100 ppm⁻¹ y⁻¹

- 森林叶片营养物质的下降
- ▶ 65%的站点N浓度有下降趋势,中值为-0.24% y-1
- ▶ 72%的站点P浓度有下降趋势,中值为-0.55% y⁻¹
- ▶ P浓度的下降趋势比N浓度更快; 63%的站点P:N 比例均存在下降的趋势,中值为-0.25% y⁻¹;
- ▶ 欧洲地区叶片氮磷浓度的下降趋势,与最近的研究相符(Craine et al., 2018; Jonard et al., 2015等)
- ▶ 植被叶片的光合速率(最大羧化速率V_{cmax}和最大 ° 电子传输速率J_{max})均与叶片的氮磷浓度存在显著 的正相关关系

原因3: 营养物质的下降对施肥效应的影响

- ▶ 收集了欧洲31274条叶片氮磷浓度观测数 据集(即CREAF_NP数据)
- ➢ 采用空间线性混合模型分析叶片氮磷对 施肥效应的影响:以每个像素施肥效应 的下降趋势作为因变量,以叶片氮磷浓 度以及其MAT和MAP作为自变量,并将 树种作为随机变量
- ▶ 欧洲地区施肥效应的下降趋势分别和叶 片氮浓度和磷浓度有显著的正相关关系
- ▶ 上述结论与众多基于FACE实验的结论相
 符(Norby et al., 2010; Reich et al., 2006; Fleischer et al., 2019; Terrer et al., 2019)

原因4: 水分供应对植被施肥效应的影响

- ➢ 基于15年的滑动窗口,分别基于遥感GPP 和TRENDY GPP计算GPP对TWS的敏感性 ,并统计了其时间变化趋势
- ➤ 遥感GPP:敏感性存在显著的增加趋势, 无论是在干旱半干旱地区(2.93% y⁻¹)、
 温带地区(2.12% y⁻¹),还是在干旱热带
 地区(2.30% y⁻¹)
- ➤ TRENDY GPP: GPP对TWS的敏感性在干 旱半干旱地区和干旱热带地区几乎没有显 著的变化趋势,在温带地区也仅有微弱的 增加趋势(0.64% y⁻¹)

原因4:水分供应对植被施肥效应的影响

- ➤ 研究区大部分地区的GPP对TWS的敏感性均有显著的上升趋势,且其与施肥效应的 下降趋势存在显著的负相关关系
- ➢ GPP对TWS的敏感性增加,表明植被对水分胁迫的响应更为敏感。如果CO₂施肥效应对WUE的提高能够一直保持,GPP对TWS的敏感性应没有显著变化。因此,GPP对TWS敏感性的增加趋势可能是施肥效应下降的一个主要迹象之一,这表明由WUE提升带来的"节水效应"在逐渐减弱。

GPP对TWS的敏感性的时间变化趋势,与施肥效应下降趋势的相关关系

录 Ħ

2. 基于遥感数据的全球GPP数据

4 未来展望

Thanks for attention!